Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
Ultrasound is an important imaging modality for the detection and characterization of breast cancer, but it has been noted to have high false-positive rates. Here, the authors present an artificial intelligence system that achieves radiologist-level accuracy in identifying breast cancer in ultrasoun...
Guardado en:
Autores principales: | Yiqiu Shen, Farah E. Shamout, Jamie R. Oliver, Jan Witowski, Kawshik Kannan, Jungkyu Park, Nan Wu, Connor Huddleston, Stacey Wolfson, Alexandra Millet, Robin Ehrenpreis, Divya Awal, Cathy Tyma, Naziya Samreen, Yiming Gao, Chloe Chhor, Stacey Gandhi, Cindy Lee, Sheila Kumari-Subaiya, Cindy Leonard, Reyhan Mohammed, Christopher Moczulski, Jaime Altabet, James Babb, Alana Lewin, Beatriu Reig, Linda Moy, Laura Heacock, Krzysztof J. Geras |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9426dec81ff479488e813049d5bf81a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department
por: Farah E. Shamout, et al.
Publicado: (2021) -
The Other Side of 2020: Questioning Everything—Doing Something
por: Adam Tyma
Publicado: (2021) -
Book Review ~ Higher Education in an Era of Digital Competition: Choices and challenges. Editor: Donald E. Hanna and Associates.
por: Elizabeth Stacey
Publicado: (2000) -
Government support for open educational resources: Policy, funding, and strategies
por: Paul Stacey
Publicado: (2013) -
Learner Support in Open, Distance and Online Learning Environments
por: Stacey Ludwig
Publicado: (2005)