Lie Symmetry Analysis for the General Classes of Generalized Modified Kuramoto-Sivashinsky Equation
Lie symmetry analysis of differential equations proves to be a powerful tool to solve or at least reduce the order and nonlinearity of the equation. Symmetries of differential equations is the most significant concept in the study of DE’s and other branches of science like physics and chemistry. In...
Guardado en:
Autores principales: | Rong Qi, Muhammad Mobeen Munir, Nazish Younas, Muhammad Idrees, Jia-Bao Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c95af22b863c4ea2b95a3cb47798511a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lie symmetries of Benjamin-Ono equation
por: Weidong Zhao, et al.
Publicado: (2021) -
The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation by Using (<inline-formula><math display="inline"><semantics><mfrac><msup><mi>G</mi><mo>′</mo></msup><mi>G</mi></mfrac></semantics></math></inline-formula>)-Expansion Method
por: Wael W. Mohammed, et al.
Publicado: (2021) -
Lie symmetry analysis and invariant solutions of 3D Euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates
por: R. Sadat, et al.
Publicado: (2021) -
Note on theoretical and practical solvability of a class of discrete equations generalizing the hyperbolic-cotangent class
por: Stevo Stević, et al.
Publicado: (2021) -
Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
por: Zhu Yuting, et al.
Publicado: (2021)