Mapping Resonance Structures in Transient Core-Ionized Atoms

The nature of transient electronic states created by photoabsorption critically determines the dynamics of the subsequently evolving system. Here, we investigate K-shell photoionized atomic neon by absorbing a second photon within the Auger-decay lifetime of 2.4 fs using the European XFEL, a unique...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. Mazza, M. Ilchen, M. D. Kiselev, E. V. Gryzlova, T. M. Baumann, R. Boll, A. De Fanis, P. Grychtol, J. Montaño, V. Music, Y. Ovcharenko, N. Rennhack, D. E. Rivas, Ph. Schmidt, R. Wagner, P. Ziolkowski, N. Berrah, B. Erk, P. Johnsson, C. Küstner-Wetekam, L. Marder, M. Martins, C. Ott, S. Pathak, T. Pfeifer, D. Rolles, O. Zatsarinny, A. N. Grum-Grzhimailo, M. Meyer
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2020
Materias:
Acceso en línea:https://doaj.org/article/c961a29f3fa7443f86c4e9141cd4a554
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The nature of transient electronic states created by photoabsorption critically determines the dynamics of the subsequently evolving system. Here, we investigate K-shell photoionized atomic neon by absorbing a second photon within the Auger-decay lifetime of 2.4 fs using the European XFEL, a unique high-repetition-rate, wavelength-tunable x-ray free-electron laser. By high-resolution electron spectroscopy, we map out the transient Rydberg resonances unraveling the details of the subsequent decay of the hollow atom. So far, ultra-short-lived electronic transients, which are often inaccessible by experiments, were mainly inferred from theory but are now addressed by nonlinear x-ray absorption. The successful characterization of these resonances with femtosecond lifetimes provides the basis for a novel class of site-specific, nonlinear, and time-resolved studies with strong impact for a wide range of topics in physics and chemistry.