Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens
Base editors enable precise genetic alterations but vary in efficiency at different loci. Here the authors analyse ABEs and CBEs at over 28,000 integrated sequences to train BE-DICT, a machine learning model capable of predicting base editing outcomes.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9632ae8e3554eb0a6f6c3e3694e3ef8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Base editors enable precise genetic alterations but vary in efficiency at different loci. Here the authors analyse ABEs and CBEs at over 28,000 integrated sequences to train BE-DICT, a machine learning model capable of predicting base editing outcomes. |
---|