Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens
Base editors enable precise genetic alterations but vary in efficiency at different loci. Here the authors analyse ABEs and CBEs at over 28,000 integrated sequences to train BE-DICT, a machine learning model capable of predicting base editing outcomes.
Guardado en:
Autores principales: | Kim F. Marquart, Ahmed Allam, Sharan Janjuha, Anna Sintsova, Lukas Villiger, Nina Frey, Michael Krauthammer, Gerald Schwank |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9632ae8e3554eb0a6f6c3e3694e3ef8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries.
por: David Skurnik, et al.
Publicado: (2013) -
Evaluation of a high-throughput, cost-effective Illumina library preparation kit
por: Eric S. Tvedte, et al.
Publicado: (2021) -
Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries
por: Emmanouil Metzakopian, et al.
Publicado: (2017) -
Droplet-based microfluidic platform for high-throughput screening of Streptomyces
por: Ran Tu, et al.
Publicado: (2021) -
HTS-PEG: a method for high throughput sequencing of the paired-ends of genomic libraries.
por: Sisi Zhou, et al.
Publicado: (2012)