Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens
Base editors enable precise genetic alterations but vary in efficiency at different loci. Here the authors analyse ABEs and CBEs at over 28,000 integrated sequences to train BE-DICT, a machine learning model capable of predicting base editing outcomes.
Enregistré dans:
Auteurs principaux: | Kim F. Marquart, Ahmed Allam, Sharan Janjuha, Anna Sintsova, Lukas Villiger, Nina Frey, Michael Krauthammer, Gerald Schwank |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c9632ae8e3554eb0a6f6c3e3694e3ef8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries.
par: David Skurnik, et autres
Publié: (2013) -
Evaluation of a high-throughput, cost-effective Illumina library preparation kit
par: Eric S. Tvedte, et autres
Publié: (2021) -
Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries
par: Emmanouil Metzakopian, et autres
Publié: (2017) -
Droplet-based microfluidic platform for high-throughput screening of Streptomyces
par: Ran Tu, et autres
Publié: (2021) -
HTS-PEG: a method for high throughput sequencing of the paired-ends of genomic libraries.
par: Sisi Zhou, et autres
Publié: (2012)