Deep Learning-Based Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communication
A deep learning-based cyclic shift keying spread spectrum (CSK-SS) underwater acoustic (UWA) communication system is proposed for improving the performance of the conventional system in low signal-to-noise ratio and multipath effects. The proposed deep learning-based system involves the long- and sh...
Guardado en:
Autores principales: | Yufei Liu, Feng Zhou, Gang Qiao, Yunjiang Zhao, Guang Yang, Xinyu Liu, Yinheng Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c96b736ec43c41df9a58407429dbf879 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Underwater Acoustic Target Recognition Method Based on Spectrograms with Different Resolutions
por: Xinwei Luo, et al.
Publicado: (2021) -
Habitat Modelling on the Potential Impacts of Shipping Noise on Fin Whales (<i>Balaenoptera physalus</i>) in Offshore Irish Waters off the Porcupine Ridge
por: Kavya Ramesh, et al.
Publicado: (2021) -
Sea Surface Temperature: From Observation to Applications
por: Francisco Pastor
Publicado: (2021) -
Evaluation of Boulder Deposits Linked to Late Neogene Hurricane Events
por: Markes E. Johnson, et al.
Publicado: (2021) -
Offshore and Onshore Wave Energy Converters: Engineering and Environmental Features
por: Luca Cavallaro, et al.
Publicado: (2021)