REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model
Eraldo Sanna Passino,1,2 Stefano Rocca,1 Sabrina Caggiu,1 Nicolò Columbano,1,2 Alessandro Castagna,3 Vania Fontani,3–5 Salvatore Rinaldi3–51Department of Veterinary Medicine, University of Sassari, Sassari, Italy; 2Comparative Surgery Research Laboratory, University of...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c97866a3fd7f46a69baebd16ac4814e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c97866a3fd7f46a69baebd16ac4814e1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c97866a3fd7f46a69baebd16ac4814e12021-12-02T07:19:56ZREAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model1178-1998https://doaj.org/article/c97866a3fd7f46a69baebd16ac4814e12017-09-01T00:00:00Zhttps://www.dovepress.com/reac-regenerative-treatment-efficacy-in-experimental-chondral-lesions--peer-reviewed-article-CIAhttps://doaj.org/toc/1178-1998Eraldo Sanna Passino,1,2 Stefano Rocca,1 Sabrina Caggiu,1 Nicolò Columbano,1,2 Alessandro Castagna,3 Vania Fontani,3–5 Salvatore Rinaldi3–51Department of Veterinary Medicine, University of Sassari, Sassari, Italy; 2Comparative Surgery Research Laboratory, University of Sassari, Sassari, Italy; 3Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy; 4Research Department, Rinaldi Fontani Foundation, Florence, Italy; 5Research Department, IRF Shanghai Biomedical Sciences, Shanghai, People’s Republic of China Abstract: Radioelectric asymmetric conveyor (REAC) technology is a platform designed to optimize cell polarity. Cell polarity is a universal biological phenomenon that is implicated in cell differentiation, proliferation, morphogenesis, aging, and rejuvenation. In this work, we investigate a timing and administration protocol for tissue optimization regenerative treatment type C, in order to treat aging-related chondral damage or injuries and gain insights into regenerative processes of articular cartilage in humans. The chondral lesion produced in this study in an animal model (6 knee joints of 4 adult sheep) was 6 mm in diameter and about 2 mm deep. These lesions, which did not involve subchondral bone, tend to increase in size and depth and are not completely repaired with normal hyaline articular cartilage since adult articular cartilage is avascular and has a very slow turnover at the cellular and molecular level. Moreover, the hydration of articular cartilage is reduced with aging and with decreased mitotic activity, synthesis, and population size of chondrocytes. Six months posttreatment, lesions appeared filled, though not completely, with newly generated tissue of the light opalescent color of healthy articular cartilage, which otherwise covered the underlying subchondral bone. The newly formed tissue surface appeared to be quite regular. Nearly complete regeneration of subchondral bone occurred, with little vascularization and ossification nuclei almost absent. The results of this study confirm previous data obtained in vitro on the regenerative effects of REAC technology on human normal and osteoarthritic chondrocytes exposed to IL-1β. The present findings indicate that REAC tissue optimization-regenerative treatment type C is a promising therapeutic tool among the other REAC regenerative treatment protocols for the treatment of cartilage lesions. Keywords: aging, senescence, articular cartilage, regenerative medicine, regenerative physical treatments, radio electric asymmetric conveyerSanna Passino ERocca SCaggiu SColumbano NCastagna AFontani VRinaldi SDove Medical PressarticleAgingSenescenceArticular cartilageRegenerative medicineRegenerative physical treatmentsRadio Electric Asymmetric Conveyer.GeriatricsRC952-954.6ENClinical Interventions in Aging, Vol Volume 12, Pp 1471-1479 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Aging Senescence Articular cartilage Regenerative medicine Regenerative physical treatments Radio Electric Asymmetric Conveyer. Geriatrics RC952-954.6 |
spellingShingle |
Aging Senescence Articular cartilage Regenerative medicine Regenerative physical treatments Radio Electric Asymmetric Conveyer. Geriatrics RC952-954.6 Sanna Passino E Rocca S Caggiu S Columbano N Castagna A Fontani V Rinaldi S REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
description |
Eraldo Sanna Passino,1,2 Stefano Rocca,1 Sabrina Caggiu,1 Nicolò Columbano,1,2 Alessandro Castagna,3 Vania Fontani,3–5 Salvatore Rinaldi3–51Department of Veterinary Medicine, University of Sassari, Sassari, Italy; 2Comparative Surgery Research Laboratory, University of Sassari, Sassari, Italy; 3Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy; 4Research Department, Rinaldi Fontani Foundation, Florence, Italy; 5Research Department, IRF Shanghai Biomedical Sciences, Shanghai, People’s Republic of China Abstract: Radioelectric asymmetric conveyor (REAC) technology is a platform designed to optimize cell polarity. Cell polarity is a universal biological phenomenon that is implicated in cell differentiation, proliferation, morphogenesis, aging, and rejuvenation. In this work, we investigate a timing and administration protocol for tissue optimization regenerative treatment type C, in order to treat aging-related chondral damage or injuries and gain insights into regenerative processes of articular cartilage in humans. The chondral lesion produced in this study in an animal model (6 knee joints of 4 adult sheep) was 6 mm in diameter and about 2 mm deep. These lesions, which did not involve subchondral bone, tend to increase in size and depth and are not completely repaired with normal hyaline articular cartilage since adult articular cartilage is avascular and has a very slow turnover at the cellular and molecular level. Moreover, the hydration of articular cartilage is reduced with aging and with decreased mitotic activity, synthesis, and population size of chondrocytes. Six months posttreatment, lesions appeared filled, though not completely, with newly generated tissue of the light opalescent color of healthy articular cartilage, which otherwise covered the underlying subchondral bone. The newly formed tissue surface appeared to be quite regular. Nearly complete regeneration of subchondral bone occurred, with little vascularization and ossification nuclei almost absent. The results of this study confirm previous data obtained in vitro on the regenerative effects of REAC technology on human normal and osteoarthritic chondrocytes exposed to IL-1β. The present findings indicate that REAC tissue optimization-regenerative treatment type C is a promising therapeutic tool among the other REAC regenerative treatment protocols for the treatment of cartilage lesions. Keywords: aging, senescence, articular cartilage, regenerative medicine, regenerative physical treatments, radio electric asymmetric conveyer |
format |
article |
author |
Sanna Passino E Rocca S Caggiu S Columbano N Castagna A Fontani V Rinaldi S |
author_facet |
Sanna Passino E Rocca S Caggiu S Columbano N Castagna A Fontani V Rinaldi S |
author_sort |
Sanna Passino E |
title |
REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
title_short |
REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
title_full |
REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
title_fullStr |
REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
title_full_unstemmed |
REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
title_sort |
reac regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model |
publisher |
Dove Medical Press |
publishDate |
2017 |
url |
https://doaj.org/article/c97866a3fd7f46a69baebd16ac4814e1 |
work_keys_str_mv |
AT sannapassinoe reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel AT roccas reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel AT caggius reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel AT columbanon reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel AT castagnaa reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel AT fontaniv reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel AT rinaldis reacregenerativetreatmentefficacyinexperimentalchondrallesionsapilotstudyonovineanimalmodel |
_version_ |
1718399480519196672 |