Building and Evaluating an Annotated Corpus for Automated Recognition of Chat-Based Social Engineering Attacks
Chat-based Social Engineering (CSE) is widely recognized as a key factor to successful cyber-attacks, especially in small and medium-sized enterprise (SME) environments. Despite the interest in preventing CSE attacks, few studies have considered the specific features of the language used by the atta...
Guardado en:
Autores principales: | Nikolaos Tsinganos, Ioannis Mavridis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c99db71197604b4d8070cefbc01d5bce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Distributed Biased Boundary Attack Method in Black-Box Attack
por: Fengtao Xiang, et al.
Publicado: (2021) -
SECS/GEMsec: A Mechanism for Detection and Prevention of Cyber-Attacks on SECS/GEM Communications in Industry 4.0 Landscape
por: Shams Ul Arfeen Laghari, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021) -
Dataset Selection for Attacker Group Identification Methods
por: Artem Pavlov, et al.
Publicado: (2021) -
The DTA “Base Format”: A TEI Subset for the Compilation of a Large Reference Corpus of Printed Text from Multiple Sources
por: Susanne Haaf, et al.
Publicado: (2015)