Wind Power Prediction Based on Variational Mode Decomposition and Feature Selection
Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty, multi-frequency and nonlinearity for it is susceptible to climatic factors such as temperature, air pressure and wind speed. Th...
Enregistré dans:
Auteurs principaux: | Gang Zhang, Benben Xu, Hongchi Liu, Jinwang Hou, Jiangbin Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c9b0de10f3ce483d9de93f8dcddb7708 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A decomposition‐based multi‐time dimension long short‐term memory model for short‐term electric load forecasting
par: Jiehui Huang, et autres
Publié: (2021) -
Voltage control and virtual synchronous generator control of HVDC interconnection line for improving stability of power system including large‐scale wind farm
par: Ayaka Nakamura, et autres
Publié: (2021) -
Collaborative Distributed AC Optimal Power Flow: A Dual Decomposition Based Algorithm
par: Zheyuan Cheng, et autres
Publié: (2021) -
System bias correction of short-term hub-height wind forecasts using the Kalman filter
par: Jingjing Xu, et autres
Publié: (2021) -
Fuzzy‐based frequency security evaluation of wind‐integrated power systems
par: Joachim Steinkohl, et autres
Publié: (2021)