VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.

Background: Passiflora quadrangularis L. has antihypertensive and anxiolytic properties observed in experimental models. Objectives: The aim of this work was to establish the vascular effects exerted by two known monodesmosidic triterpene saponins, 3-O-β-D-glucopyranosyloleanolic acid (Compound 1) (...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mario Francisco Guerrero Pabón, Lesly L Bareño, Pilar Puebla, Arturo San Feliciano
Formato: article
Lenguaje:EN
Publicado: Universidad de Antioquia 2020
Materias:
Acceso en línea:https://doaj.org/article/c9c04c1165df4bb29af447a2c930329f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c9c04c1165df4bb29af447a2c930329f
record_format dspace
spelling oai:doaj.org-article:c9c04c1165df4bb29af447a2c930329f2021-11-16T19:19:48ZVASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.0121-40042145-266010.17533/udea.vitae.v27n2a02https://doaj.org/article/c9c04c1165df4bb29af447a2c930329f2020-09-01T00:00:00Zhttps://revistas.udea.edu.co/index.php/vitae/article/view/341585https://doaj.org/toc/0121-4004https://doaj.org/toc/2145-2660Background: Passiflora quadrangularis L. has antihypertensive and anxiolytic properties observed in experimental models. Objectives: The aim of this work was to establish the vascular effects exerted by two known monodesmosidic triterpene saponins, 3-O-β-D-glucopyranosyloleanolic acid (Compound 1) (not previously described for this plant) and, 3-O-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl] oleanolic acid (Compound 2), isolated from the ethanolic extract of Passiflora quadrangularis L. leaves. Methods: The structural elucidation was achieved by Nuclear Magnetic Resonance (NMR) experiments and High-Resolution Mass Spectrometry (HRMS). Aortic rings from Wistar rats, previously stimulated with phenylephrine (PE, 1µM) and washed, were exposed to cumulatively concentrations of compound 1 and compound 2 (10 to 400 µM). Ethanolic extract from leaves of P. quadrangularis L. (10 to 320 µg/mL) and clonidine (1nM to 100µM) were also used for comparison. Concentration-response curves of compounds 1 and 2 were examined in presence and absence of: endothelium, the alpha-2 antagonist yohimbine (1 and 100 µM), the alpha non-selective antagonist phentolamine (1µM), the alpha-1 antagonist prazosin (1µM) and the calcium channel blocker verapamil (10 and 100 µM). In addition, a cumulative response curve of acetylcholine (ACh, 10nM to 10µM) and sodium nitroprusside (SNP, 1nM to 100µM) were assayed in rings precontracted with compounds 1 and 2 (400 µM). Results: Compounds 1 and 2 elicited a vasoconstriction response in intact aorta rings in a similar way (pEC50: 3.92±0.01 and 4.09±0.01, respectively), the effect that did not change in denuded rings (pEC50: 3.90±0.01 and 4.11±0.01). The potency order (pEC50) of compounds 1 and 2 decreased according to the following: verapamil (3.53±0.01 and 3.90±0.02; p<0.05) < yohimbine (3.65±0.01 and 3.94±0.02; p<0.05) < prazosin (3.86±0.01 and 4.30±0.02) < phentolamine (4.05±0.02 and 4.05±0.01). SNP but not ACh, was able to decrease the vasopressor effect of compounds 1 and 2 (pIC50: 8.61±0.01 and 8.24 ± 0.15, respectively). Conclusions: Compounds 1 and 2 are key metabolites responsible for the ex vivo vasoconstrictor response induced by P. quadrangularis L. Activation of voltage-dependent calcium channels and/or α2-adrenergic receptors stimulation could be mechanisms implicated.Mario Francisco Guerrero PabónLesly L BareñoPilar PueblaArturo San FelicianoUniversidad de Antioquiaarticlepassifloraoleanane triterpenessaponinsaortic ringsvasoconstrictionantihypertensiveFood processing and manufactureTP368-456Pharmaceutical industryHD9665-9675ENVitae, Vol 27, Iss 2 (2020)
institution DOAJ
collection DOAJ
language EN
topic passiflora
oleanane triterpenes
saponins
aortic rings
vasoconstriction
antihypertensive
Food processing and manufacture
TP368-456
Pharmaceutical industry
HD9665-9675
spellingShingle passiflora
oleanane triterpenes
saponins
aortic rings
vasoconstriction
antihypertensive
Food processing and manufacture
TP368-456
Pharmaceutical industry
HD9665-9675
Mario Francisco Guerrero Pabón
Lesly L Bareño
Pilar Puebla
Arturo San Feliciano
VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.
description Background: Passiflora quadrangularis L. has antihypertensive and anxiolytic properties observed in experimental models. Objectives: The aim of this work was to establish the vascular effects exerted by two known monodesmosidic triterpene saponins, 3-O-β-D-glucopyranosyloleanolic acid (Compound 1) (not previously described for this plant) and, 3-O-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl] oleanolic acid (Compound 2), isolated from the ethanolic extract of Passiflora quadrangularis L. leaves. Methods: The structural elucidation was achieved by Nuclear Magnetic Resonance (NMR) experiments and High-Resolution Mass Spectrometry (HRMS). Aortic rings from Wistar rats, previously stimulated with phenylephrine (PE, 1µM) and washed, were exposed to cumulatively concentrations of compound 1 and compound 2 (10 to 400 µM). Ethanolic extract from leaves of P. quadrangularis L. (10 to 320 µg/mL) and clonidine (1nM to 100µM) were also used for comparison. Concentration-response curves of compounds 1 and 2 were examined in presence and absence of: endothelium, the alpha-2 antagonist yohimbine (1 and 100 µM), the alpha non-selective antagonist phentolamine (1µM), the alpha-1 antagonist prazosin (1µM) and the calcium channel blocker verapamil (10 and 100 µM). In addition, a cumulative response curve of acetylcholine (ACh, 10nM to 10µM) and sodium nitroprusside (SNP, 1nM to 100µM) were assayed in rings precontracted with compounds 1 and 2 (400 µM). Results: Compounds 1 and 2 elicited a vasoconstriction response in intact aorta rings in a similar way (pEC50: 3.92±0.01 and 4.09±0.01, respectively), the effect that did not change in denuded rings (pEC50: 3.90±0.01 and 4.11±0.01). The potency order (pEC50) of compounds 1 and 2 decreased according to the following: verapamil (3.53±0.01 and 3.90±0.02; p<0.05) < yohimbine (3.65±0.01 and 3.94±0.02; p<0.05) < prazosin (3.86±0.01 and 4.30±0.02) < phentolamine (4.05±0.02 and 4.05±0.01). SNP but not ACh, was able to decrease the vasopressor effect of compounds 1 and 2 (pIC50: 8.61±0.01 and 8.24 ± 0.15, respectively). Conclusions: Compounds 1 and 2 are key metabolites responsible for the ex vivo vasoconstrictor response induced by P. quadrangularis L. Activation of voltage-dependent calcium channels and/or α2-adrenergic receptors stimulation could be mechanisms implicated.
format article
author Mario Francisco Guerrero Pabón
Lesly L Bareño
Pilar Puebla
Arturo San Feliciano
author_facet Mario Francisco Guerrero Pabón
Lesly L Bareño
Pilar Puebla
Arturo San Feliciano
author_sort Mario Francisco Guerrero Pabón
title VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.
title_short VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.
title_full VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.
title_fullStr VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.
title_full_unstemmed VASCULAR MECHANISMS OF TRITERPENOID SAPONINS ISOLATED FROM Passiflora quadrangularis L.
title_sort vascular mechanisms of triterpenoid saponins isolated from passiflora quadrangularis l.
publisher Universidad de Antioquia
publishDate 2020
url https://doaj.org/article/c9c04c1165df4bb29af447a2c930329f
work_keys_str_mv AT mariofranciscoguerreropabon vascularmechanismsoftriterpenoidsaponinsisolatedfrompassifloraquadrangularisl
AT leslylbareno vascularmechanismsoftriterpenoidsaponinsisolatedfrompassifloraquadrangularisl
AT pilarpuebla vascularmechanismsoftriterpenoidsaponinsisolatedfrompassifloraquadrangularisl
AT arturosanfeliciano vascularmechanismsoftriterpenoidsaponinsisolatedfrompassifloraquadrangularisl
_version_ 1718426131040829440