An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images
Abstract Diabetic retinopathy (DR) is one of the leading causes of vision loss across the world. Yet despite its wide prevalence, the majority of affected people lack access to the specialized ophthalmologists and equipment required for monitoring their condition. This can lead to delays in the star...
Guardado en:
Autores principales: | Alexandros Papadopoulos, Fotis Topouzis, Anastasios Delopoulos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9c9724992b54955aeca1777eed06637 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images
por: Kangrok Oh, et al.
Publicado: (2021) -
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading
por: Jaakko Sahlsten, et al.
Publicado: (2019) -
Digital image processing software for diagnosing diabetic retinopathy from fundus photograph
por: Ratanapakorn T, et al.
Publicado: (2019) -
The reading of components of diabetic retinopathy: an evolutionary approach for filtering normal digital fundus imaging in screening and population based studies.
por: Hongying Lilian Tang, et al.
Publicado: (2013) -
Telemedicine for diabetic retinopathy screening using an ultra-widefield fundus camera
por: Hussain N, et al.
Publicado: (2017)