Inferring causation from time series in Earth system sciences
Questions of causality are ubiquitous in Earth system sciences and beyond, yet correlation techniques still prevail. This Perspective provides an overview of causal inference methods, identifies promising applications and methodological challenges, and initiates a causality benchmark platform.
Guardado en:
Autores principales: | Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-Valls, Dim Coumou, Ethan Deyle, Clark Glymour, Marlene Kretschmer, Miguel D. Mahecha, Jordi Muñoz-Marí, Egbert H. van Nes, Jonas Peters, Rick Quax, Markus Reichstein, Marten Scheffer, Bernhard Schölkopf, Peter Spirtes, George Sugihara, Jie Sun, Kun Zhang, Jakob Zscheischler |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9cb78b8c1d74e3fbd7d14afb1c5eee7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Institutions and inequality interplay shapes the impact of economic growth on biodiversity loss
por: M. Usman Mirza, et al.
Publicado: (2020) -
Observed trends in the magnitude and persistence of monthly temperature variability
por: Timothy M. Lenton, et al.
Publicado: (2017) -
Predicting regional coastal sea level changes with machine learning
por: Veronica Nieves, et al.
Publicado: (2021) -
Evaluating the performance of multivariate indicators of resilience loss
por: Els Weinans, et al.
Publicado: (2021) -
Constitution, Mechanism, and Downward Causation
por: Alan McKay
Publicado: (2016)