Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering
Xiang Gao,1,2,* Xiaohong Zhang,3,* Jinlin Song,1,2 Xiao Xu,4 Anxiu Xu,1 Mengke Wang,4 Bingwu Xie,1 Enyi Huang,2 Feng Deng,1,2 Shicheng Wei2–41College of Stomatology, 2Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 3Center for Bio...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9dc8f1964e540cb86c0999fb9ea1ebe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c9dc8f1964e540cb86c0999fb9ea1ebe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c9dc8f1964e540cb86c0999fb9ea1ebe2021-12-02T08:07:35ZOsteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering1178-2013https://doaj.org/article/c9dc8f1964e540cb86c0999fb9ea1ebe2015-11-01T00:00:00Zhttps://www.dovepress.com/osteoinductive-peptide-functionalized-nanofibers-with-highly-ordered-s-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Xiang Gao,1,2,* Xiaohong Zhang,3,* Jinlin Song,1,2 Xiao Xu,4 Anxiu Xu,1 Mengke Wang,4 Bingwu Xie,1 Enyi Huang,2 Feng Deng,1,2 Shicheng Wei2–41College of Stomatology, 2Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 3Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 4Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering.Keywords: biomimetic, nanofiber, peptide, bone tissue engineeringGao XZhang XHSong JLXu XXu AXWang MKXie BWHuang EYDeng FWei SCDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 7109-7128 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Gao X Zhang XH Song JL Xu X Xu AX Wang MK Xie BW Huang EY Deng F Wei SC Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
description |
Xiang Gao,1,2,* Xiaohong Zhang,3,* Jinlin Song,1,2 Xiao Xu,4 Anxiu Xu,1 Mengke Wang,4 Bingwu Xie,1 Enyi Huang,2 Feng Deng,1,2 Shicheng Wei2–41College of Stomatology, 2Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 3Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 4Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering.Keywords: biomimetic, nanofiber, peptide, bone tissue engineering |
format |
article |
author |
Gao X Zhang XH Song JL Xu X Xu AX Wang MK Xie BW Huang EY Deng F Wei SC |
author_facet |
Gao X Zhang XH Song JL Xu X Xu AX Wang MK Xie BW Huang EY Deng F Wei SC |
author_sort |
Gao X |
title |
Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
title_short |
Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
title_full |
Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
title_fullStr |
Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
title_full_unstemmed |
Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
title_sort |
osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering |
publisher |
Dove Medical Press |
publishDate |
2015 |
url |
https://doaj.org/article/c9dc8f1964e540cb86c0999fb9ea1ebe |
work_keys_str_mv |
AT gaox osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT zhangxh osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT songjl osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT xux osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT xuax osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT wangmk osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT xiebw osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT huangey osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT dengf osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering AT weisc osteoinductivepeptidefunctionalizednanofiberswithhighlyorderedstructureasbiomimeticscaffoldsforbonetissueengineering |
_version_ |
1718398689172520960 |