Bone density and genomic analysis unfold cold adaptation mechanisms of ancient inhabitants of Tierra del Fuego

Abstract The Fuegians, ancient inhabitants of Tierra del Fuego, are an exemplary case of a cold-adapted population, since they were capable of living in extreme climatic conditions without any adequate clothing. However, the mechanisms of their extraordinary resistance to cold remain enigmatic. Brow...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mikiko Watanabe, Renata Risi, Mary Anne Tafuri, Valentina Silvestri, Daniel D’Andrea, Domenico Raimondo, Sandra Rea, Fabio Di Vincenzo, Antonio Profico, Dario Tuccinardi, Rosa Sciuto, Sabrina Basciani, Stefania Mariani, Carla Lubrano, Saverio Cinti, Laura Ottini, Giorgio Manzi, Lucio Gnessi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c9e3f63201374f519257f4ec9c9438fe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The Fuegians, ancient inhabitants of Tierra del Fuego, are an exemplary case of a cold-adapted population, since they were capable of living in extreme climatic conditions without any adequate clothing. However, the mechanisms of their extraordinary resistance to cold remain enigmatic. Brown adipose tissue (BAT) plays a crucial role in this kind of adaptation, besides having a protective role on the detrimental effect of low temperatures on bone structure. Skeletal remains of 12 adult Fuegians, collected in the second half of XIX century, were analyzed for bone mineral density and structure. We show that, despite the unfavorable climate, bone mineral density of Fuegians was close to that seen in modern humans living in temperate zones. Furthermore, we report significant differences between Fuegians and other cold-adapted populations in the frequency of the Homeobox protein Hox-C4 (HOXC4) rs190771160 variant, a gene involved in BAT differentiation, whose identified variant is predicted to upregulate HOXC4 expression. Greater BAT accumulation might therefore explain the Fuegians extreme cold-resistance and the protection against major cold-related damage. These results increase our understanding of how ecological challenges have been important drivers of human–environment interactions during Humankind history.