Prediction of autism spectrum disorder diagnosis using nonlinear measures of language-related EEG at 6 and 12 months
Abstract Background Early identification of autism spectrum disorder (ASD) provides an opportunity for early intervention and improved developmental outcomes. The use of electroencephalography (EEG) in infancy has shown promise in predicting later ASD diagnoses and in identifying neural mechanisms u...
Guardado en:
Autores principales: | Fleming C. Peck, Laurel J. Gabard-Durnam, Carol L. Wilkinson, William Bosl, Helen Tager-Flusberg, Charles A. Nelson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9ef04b660b94503944c06ab407cdf9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Longitudinal EEG power in the first postnatal year differentiates autism outcomes
por: Laurel J. Gabard-Durnam, et al.
Publicado: (2019) -
EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach
por: William J. Bosl, et al.
Publicado: (2018) -
Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: an EEG study.
por: Giulia Righi, et al.
Publicado: (2014) -
Imitation and the developing social brain: infants’ somatotopic EEG patterns for acts of self and other
por: Peter J. Marshall, et al.
Publicado: (2013) - Autism