DNA Accounting: Tallying Genomes to Detect Adulterated Saffron
The EU General Food Law not only aims at ensuring food safety but also to ‘prevent fraudulent or deceptive practices; the adulteration of food; and any other practices which may mislead the consumer’. Especially the partial or complete, deliberate, and intentional substitution of valuable ingredient...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca03e1f7ef9f494fad14d9b0eeca1d91 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ca03e1f7ef9f494fad14d9b0eeca1d91 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ca03e1f7ef9f494fad14d9b0eeca1d912021-11-25T17:34:00ZDNA Accounting: Tallying Genomes to Detect Adulterated Saffron10.3390/foods101126702304-8158https://doaj.org/article/ca03e1f7ef9f494fad14d9b0eeca1d912021-11-01T00:00:00Zhttps://www.mdpi.com/2304-8158/10/11/2670https://doaj.org/toc/2304-8158The EU General Food Law not only aims at ensuring food safety but also to ‘prevent fraudulent or deceptive practices; the adulteration of food; and any other practices which may mislead the consumer’. Especially the partial or complete, deliberate, and intentional substitution of valuable ingredients (e.g., Saffron) for less valuable ones is of concern. Due to the variety of products on the market an approach to detect food adulteration that works well for one species may not be easily applicable to another. Here we present a broadly applicable approach for the detection of substitution of biological materials based on digital PCR. By simultaneously measuring and forecasting the number of genome copies in a sample, fraud is detectable as a discrepancy between these two values. Apart from the choice of target gene, the procedure is identical across all species. It is scalable, rapid, and has a high dynamic range. We provide proof of concept by presenting the analysis of 141 samples of Saffron (<i>Crocus sativus</i>) from across the European market by DNA accounting and the verification of these results by NGS analysis.Antoon LievensValentina ParacchiniDanilo PietrettiLinda GarlantAlain MaquetFranz UlberthMDPI AGarticlefood fraudsaffrondigital PCRnext generation sequencingChemical technologyTP1-1185ENFoods, Vol 10, Iss 2670, p 2670 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
food fraud saffron digital PCR next generation sequencing Chemical technology TP1-1185 |
spellingShingle |
food fraud saffron digital PCR next generation sequencing Chemical technology TP1-1185 Antoon Lievens Valentina Paracchini Danilo Pietretti Linda Garlant Alain Maquet Franz Ulberth DNA Accounting: Tallying Genomes to Detect Adulterated Saffron |
description |
The EU General Food Law not only aims at ensuring food safety but also to ‘prevent fraudulent or deceptive practices; the adulteration of food; and any other practices which may mislead the consumer’. Especially the partial or complete, deliberate, and intentional substitution of valuable ingredients (e.g., Saffron) for less valuable ones is of concern. Due to the variety of products on the market an approach to detect food adulteration that works well for one species may not be easily applicable to another. Here we present a broadly applicable approach for the detection of substitution of biological materials based on digital PCR. By simultaneously measuring and forecasting the number of genome copies in a sample, fraud is detectable as a discrepancy between these two values. Apart from the choice of target gene, the procedure is identical across all species. It is scalable, rapid, and has a high dynamic range. We provide proof of concept by presenting the analysis of 141 samples of Saffron (<i>Crocus sativus</i>) from across the European market by DNA accounting and the verification of these results by NGS analysis. |
format |
article |
author |
Antoon Lievens Valentina Paracchini Danilo Pietretti Linda Garlant Alain Maquet Franz Ulberth |
author_facet |
Antoon Lievens Valentina Paracchini Danilo Pietretti Linda Garlant Alain Maquet Franz Ulberth |
author_sort |
Antoon Lievens |
title |
DNA Accounting: Tallying Genomes to Detect Adulterated Saffron |
title_short |
DNA Accounting: Tallying Genomes to Detect Adulterated Saffron |
title_full |
DNA Accounting: Tallying Genomes to Detect Adulterated Saffron |
title_fullStr |
DNA Accounting: Tallying Genomes to Detect Adulterated Saffron |
title_full_unstemmed |
DNA Accounting: Tallying Genomes to Detect Adulterated Saffron |
title_sort |
dna accounting: tallying genomes to detect adulterated saffron |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/ca03e1f7ef9f494fad14d9b0eeca1d91 |
work_keys_str_mv |
AT antoonlievens dnaaccountingtallyinggenomestodetectadulteratedsaffron AT valentinaparacchini dnaaccountingtallyinggenomestodetectadulteratedsaffron AT danilopietretti dnaaccountingtallyinggenomestodetectadulteratedsaffron AT lindagarlant dnaaccountingtallyinggenomestodetectadulteratedsaffron AT alainmaquet dnaaccountingtallyinggenomestodetectadulteratedsaffron AT franzulberth dnaaccountingtallyinggenomestodetectadulteratedsaffron |
_version_ |
1718412254243717120 |