The duality between particle methods and artificial neural networks
Abstract The algorithm behind particle methods is extremely versatile and used in a variety of applications that range from molecular dynamics to astrophysics. For continuum mechanics applications, the concept of ‘particle’ can be generalized to include discrete portions of solid and liquid matter....
Enregistré dans:
Auteurs principaux: | A. Alexiadis, M. J. H. Simmons, K. Stamatopoulos, H. K. Batchelor, I. Moulitsas |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ca0984051e2b46a9a399d40d1812f73e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Publisher Correction: The duality between particle methods and artificial neural networks
par: A. Alexiadis, et autres
Publié: (2021) -
Duality between time series and networks.
par: Andriana S L O Campanharo, et autres
Publié: (2011) -
Wave-Particle Duality of Many-Body Quantum States
par: Christoph Dittel, et autres
Publié: (2021) -
Particle-antiparticle duality and fractionalization of topological chiral solitons
par: Chang-geun Oh, et autres
Publié: (2021) -
Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks
par: Schrefler BA, et autres
Publié: (2011)