The duality between particle methods and artificial neural networks
Abstract The algorithm behind particle methods is extremely versatile and used in a variety of applications that range from molecular dynamics to astrophysics. For continuum mechanics applications, the concept of ‘particle’ can be generalized to include discrete portions of solid and liquid matter....
Guardado en:
Autores principales: | A. Alexiadis, M. J. H. Simmons, K. Stamatopoulos, H. K. Batchelor, I. Moulitsas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca0984051e2b46a9a399d40d1812f73e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: The duality between particle methods and artificial neural networks
por: A. Alexiadis, et al.
Publicado: (2021) -
Duality between time series and networks.
por: Andriana S L O Campanharo, et al.
Publicado: (2011) -
Wave-Particle Duality of Many-Body Quantum States
por: Christoph Dittel, et al.
Publicado: (2021) -
Particle-antiparticle duality and fractionalization of topological chiral solitons
por: Chang-geun Oh, et al.
Publicado: (2021) -
Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks
por: Schrefler BA, et al.
Publicado: (2011)