Radiomics-based machine learning differentiates “ground-glass” opacities due to COVID-19 from acute non-COVID-19 lung disease
Abstract Ground-glass opacities (GGOs) are a non-specific high-resolution computed tomography (HRCT) finding tipically observed in early Coronavirus disesase 19 (COVID-19) pneumonia. However, GGOs are also seen in other acute lung diseases, thus making challenging the differential diagnosis. To this...
Guardado en:
Autores principales: | Andrea Delli Pizzi, Antonio Maria Chiarelli, Piero Chiacchiaretta, Cristina Valdesi, Pierpaolo Croce, Domenico Mastrodicasa, Michela Villani, Stefano Trebeschi, Francesco Lorenzo Serafini, Consuelo Rosa, Giulio Cocco, Riccardo Luberti, Sabrina Conte, Lucia Mazzamurro, Manuela Mereu, Rosa Lucia Patea, Valentina Panara, Stefano Marinari, Jacopo Vecchiet, Massimo Caulo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca0ccf9204d9467b9413f9ffef0d7789 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer
por: Andrea Delli Pizzi, et al.
Publicado: (2021) -
Platypnoea-Orthodeoxia Syndrome in COVID-19
por: Francesca Salvotti, et al.
Publicado: (2021) -
Homelessness and COVID-19: Leaving No One Behind
por: Massimo Ralli, et al.
Publicado: (2021) -
A Bayesian-Deep Learning Model for Estimating COVID-19 Evolution in Spain
por: Stefano Cabras
Publicado: (2021) -
An Investigation on the Effect of the Bank Opacity on the Regulatory Forbearance
por: Sasan Mehrani, et al.
Publicado: (2021)