Bulk-edge correspondence of classical diffusion phenomena

Abstract We elucidate that diffusive systems, which are widely found in nature, can be a new platform of the bulk-edge correspondence, a representative topological phenomenon. Using a discretized diffusion equation, we demonstrate the emergence of robust edge states protected by the winding number f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tsuneya Yoshida, Yasuhiro Hatsugai
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ca0d89b92b974e6e83693a64d47e5aa8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ca0d89b92b974e6e83693a64d47e5aa8
record_format dspace
spelling oai:doaj.org-article:ca0d89b92b974e6e83693a64d47e5aa82021-12-02T15:22:57ZBulk-edge correspondence of classical diffusion phenomena10.1038/s41598-020-80180-w2045-2322https://doaj.org/article/ca0d89b92b974e6e83693a64d47e5aa82021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80180-whttps://doaj.org/toc/2045-2322Abstract We elucidate that diffusive systems, which are widely found in nature, can be a new platform of the bulk-edge correspondence, a representative topological phenomenon. Using a discretized diffusion equation, we demonstrate the emergence of robust edge states protected by the winding number for one- and two-dimensional systems. These topological edge states can be experimentally accessible by measuring diffusive dynamics at edges. Furthermore, we discover a novel diffusion phenomenon by numerically simulating the distribution of temperatures for a honeycomb lattice system; the temperature field with wavenumber $$\pi $$ π cannot diffuse to the bulk, which is attributed to the complete localization of the edge state.Tsuneya YoshidaYasuhiro HatsugaiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tsuneya Yoshida
Yasuhiro Hatsugai
Bulk-edge correspondence of classical diffusion phenomena
description Abstract We elucidate that diffusive systems, which are widely found in nature, can be a new platform of the bulk-edge correspondence, a representative topological phenomenon. Using a discretized diffusion equation, we demonstrate the emergence of robust edge states protected by the winding number for one- and two-dimensional systems. These topological edge states can be experimentally accessible by measuring diffusive dynamics at edges. Furthermore, we discover a novel diffusion phenomenon by numerically simulating the distribution of temperatures for a honeycomb lattice system; the temperature field with wavenumber $$\pi $$ π cannot diffuse to the bulk, which is attributed to the complete localization of the edge state.
format article
author Tsuneya Yoshida
Yasuhiro Hatsugai
author_facet Tsuneya Yoshida
Yasuhiro Hatsugai
author_sort Tsuneya Yoshida
title Bulk-edge correspondence of classical diffusion phenomena
title_short Bulk-edge correspondence of classical diffusion phenomena
title_full Bulk-edge correspondence of classical diffusion phenomena
title_fullStr Bulk-edge correspondence of classical diffusion phenomena
title_full_unstemmed Bulk-edge correspondence of classical diffusion phenomena
title_sort bulk-edge correspondence of classical diffusion phenomena
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ca0d89b92b974e6e83693a64d47e5aa8
work_keys_str_mv AT tsuneyayoshida bulkedgecorrespondenceofclassicaldiffusionphenomena
AT yasuhirohatsugai bulkedgecorrespondenceofclassicaldiffusionphenomena
_version_ 1718387400847130624