From Inner Topological Structure to Functional Nanofibers: Theoretical Analysis and Experimental Verification
The mechanical strength of spider silk is the highest among all natural fibers, and its flexibility is also excellent; this phenomenon can be explained geometrically, due to its hierarchical structure, the last cascade of which beginning with well-ordered macromolecules. The inner topological struct...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca152216633147c189d30367871587f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The mechanical strength of spider silk is the highest among all natural fibers, and its flexibility is also excellent; this phenomenon can be explained geometrically, due to its hierarchical structure, the last cascade of which beginning with well-ordered macromolecules. The inner topological structure of a nanofiber plays an important role in controlling its functions, e.g., its mechanical, electrical and chemical properties. This paper shows that nanoparticles can be well-ordered in the electrospinning process as a result, the nanofibers’ properties can be adjusted. Some experiments are designed to verify our theoretical prediction. |
---|