Massive computational acceleration by using neural networks to emulate mechanism-based biological models
Mechanistic models provide valuable insights, but large-scale simulations are computationally expensive. Here, the authors show that it is possible to explore the dynamics of a mechanistic model over a large set of parameters by training an artificial neural network on a smaller set of simulations.
Guardado en:
Autores principales: | Shangying Wang, Kai Fan, Nan Luo, Yangxiaolu Cao, Feilun Wu, Carolyn Zhang, Katherine A. Heller, Lingchong You |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca202084bd924cf29c6afd7e9e5166b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Futurist Emulation of Horace
por: Manfred Schruba
Publicado: (2021) -
An Emulation Mechanism for PLC Communication Features
por: I-Hsien Liu, et al.
Publicado: (2021) -
Metabolic perceptrons for neural computing in biological systems
por: Amir Pandi, et al.
Publicado: (2019) -
Emulating complex simulations by machine learning methods
por: Paola Stolfi, et al.
Publicado: (2021) -
A factorisation-aware Matrix element emulator
por: D. Maître, et al.
Publicado: (2021)