Massive computational acceleration by using neural networks to emulate mechanism-based biological models
Mechanistic models provide valuable insights, but large-scale simulations are computationally expensive. Here, the authors show that it is possible to explore the dynamics of a mechanistic model over a large set of parameters by training an artificial neural network on a smaller set of simulations.
Enregistré dans:
Auteurs principaux: | Shangying Wang, Kai Fan, Nan Luo, Yangxiaolu Cao, Feilun Wu, Carolyn Zhang, Katherine A. Heller, Lingchong You |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ca202084bd924cf29c6afd7e9e5166b7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Futurist Emulation of Horace
par: Manfred Schruba
Publié: (2021) -
An Emulation Mechanism for PLC Communication Features
par: I-Hsien Liu, et autres
Publié: (2021) -
Metabolic perceptrons for neural computing in biological systems
par: Amir Pandi, et autres
Publié: (2019) -
Emulating complex simulations by machine learning methods
par: Paola Stolfi, et autres
Publié: (2021) -
A factorisation-aware Matrix element emulator
par: D. Maître, et autres
Publié: (2021)