Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations

Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: J. M. Ripalda, J. Buencuerpo, I. García
Format: article
Langue:EN
Publié: Nature Portfolio 2018
Sujets:
Q
Accès en ligne:https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:ca2058cb97814de0812dcc6103f7579c
record_format dspace
spelling oai:doaj.org-article:ca2058cb97814de0812dcc6103f7579c2021-12-02T15:34:06ZSolar cell designs by maximizing energy production based on machine learning clustering of spectral variations10.1038/s41467-018-07431-32041-1723https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c2018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07431-3https://doaj.org/toc/2041-1723Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.J. M. RipaldaJ. BuencuerpoI. GarcíaNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
J. M. Ripalda
J. Buencuerpo
I. García
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
description Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.
format article
author J. M. Ripalda
J. Buencuerpo
I. García
author_facet J. M. Ripalda
J. Buencuerpo
I. García
author_sort J. M. Ripalda
title Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_short Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_full Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_fullStr Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_full_unstemmed Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_sort solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c
work_keys_str_mv AT jmripalda solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations
AT jbuencuerpo solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations
AT igarcia solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations
_version_ 1718386928933404672