Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ca2058cb97814de0812dcc6103f7579c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ca2058cb97814de0812dcc6103f7579c2021-12-02T15:34:06ZSolar cell designs by maximizing energy production based on machine learning clustering of spectral variations10.1038/s41467-018-07431-32041-1723https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c2018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07431-3https://doaj.org/toc/2041-1723Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.J. M. RipaldaJ. BuencuerpoI. GarcíaNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q J. M. Ripalda J. Buencuerpo I. García Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
description |
Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency. |
format |
article |
author |
J. M. Ripalda J. Buencuerpo I. García |
author_facet |
J. M. Ripalda J. Buencuerpo I. García |
author_sort |
J. M. Ripalda |
title |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_short |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_full |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_fullStr |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_full_unstemmed |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_sort |
solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c |
work_keys_str_mv |
AT jmripalda solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations AT jbuencuerpo solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations AT igarcia solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations |
_version_ |
1718386928933404672 |