Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.
Enregistré dans:
Auteurs principaux: | J. M. Ripalda, J. Buencuerpo, I. García |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ca2058cb97814de0812dcc6103f7579c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine learning in spectral domain
par: Lorenzo Giambagli, et autres
Publié: (2021) -
Wavefront shaping assisted design of spectral splitters and solar concentrators
par: Berk N. Gün, et autres
Publié: (2021) -
Spatiotemporal dynamics of maximal and minimal EEG spectral power.
par: Melisa Menceloglu, et autres
Publié: (2021) -
Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances
par: Abut F, et autres
Publié: (2015) -
Designing microbial communities to maximize the thermodynamic driving force for the production of chemicals.
par: Pavlos Stephanos Bekiaris, et autres
Publié: (2021)