Object-Based Image Retrieval Using the U-Net-Based Neural Network
Day by day, all the research communities have been focusing on digital image retrieval due to more internet and social media uses. In this paper, a U-Net-based neural network is proposed for the segmentation process and Haar DWT and lifting wavelet schemes are used for feature extraction in content-...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca265a49b19b4a8f92e15914c418a331 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Day by day, all the research communities have been focusing on digital image retrieval due to more internet and social media uses. In this paper, a U-Net-based neural network is proposed for the segmentation process and Haar DWT and lifting wavelet schemes are used for feature extraction in content-based image retrieval (CBIR). Haar wavelet is preferred as it is easy to understand, very simple to compute, and the fastest. The U-Net-based neural network (CNN) gives more accurate results than the existing methodology because deep learning techniques extract low-level and high-level features from the input image. For the evaluation process, two benchmark datasets are used, and the accuracy of the proposed method is 93.01% and 88.39% on Corel 1K and Corel 5K. U-Net is used for the segmentation purpose, and it reduces the dimension of the feature vector and feature extraction time by 5 seconds compared to the existing methods. According to the performance analysis, the proposed work has proven that U-Net improves image retrieval performance in terms of accuracy, precision, and recall on both the benchmark datasets. |
---|