Colorectal Cancer Detected by Machine Learning Models Using Conventional Laboratory Test Data
Background: Current diagnostic methods for colorectal cancer (CRC) are colonoscopy and sigmoidoscopy, which are invasive and complex procedures with possible complications. This study aimed to determine models for CRC identification that involve minimally invasive, affordable, portable, and accurate...
Guardado en:
Autores principales: | Hui Li MS, Jianmei Lin BS, Yanhong Xiao MS, Wenwen Zheng MS, Lu Zhao PhD, Xiangling Yang PhD, Minsheng Zhong MS, Huanliang Liu MD, PhD |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca2bfa8624df486da2556762203b5033 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A 90-day Sub-chronic Oral Toxicity Assessment of Mulberry Extract in Sprague Dawley Rats
por: Min Hong MD, PhD, et al.
Publicado: (2021) -
Tetrathiomolybdate Partially Alleviates Erectile Dysfunction of Type 1 Diabetic Rats Through Affecting Ceruloplasmin/eNOS and Inhibiting Corporal Fibrosis and Systemic Inflammation
por: Yinghao Yin, MS, et al.
Publicado: (2022) -
Cone Beam CT (CBCT) Based Synthetic
CT Generation Using Deep Learning
Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy
por: Xudong Xue PhD, et al.
Publicado: (2021) -
A Case of Glucocorticoid Hypersensitivity Syndrome Associated With Underlying Rubella Virus Infection
por: Zhen Zhang, MS, et al.
Publicado: (2021) -
A finite element study of the relationship between upper body weight and the loads experienced by the human lumbosacral spine, and fusion instrumentation, in a standing upright posture
por: Justin M Warren, MS, PhD, et al.
Publicado: (2021)