Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis
Abstract We present a fundamentally new approach to design and assess wearable motion systems based on biomechanical simulation and sensor data synthesis. We devise a methodology of personal biomechanical models and virtually attach sensor models to body parts, including sensor positions frequently...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca5c4f25e12b463190f470f24354f167 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ca5c4f25e12b463190f470f24354f167 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ca5c4f25e12b463190f470f24354f1672021-12-02T15:39:58ZEstimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis10.1038/s41598-020-68225-62045-2322https://doaj.org/article/ca5c4f25e12b463190f470f24354f1672020-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-68225-6https://doaj.org/toc/2045-2322Abstract We present a fundamentally new approach to design and assess wearable motion systems based on biomechanical simulation and sensor data synthesis. We devise a methodology of personal biomechanical models and virtually attach sensor models to body parts, including sensor positions frequently considered for wearable devices. The simulation enables us to synthesise motion sensor data, which is subsequently considered as input for gait marker estimation algorithms. We evaluated our methodology in two case studies, including running athletes and hemiparetic patients. Our analysis shows that running speed affects gait marker estimation performance. Estimation error of stride duration varies between athletes across 834 simulated sensor positions and can soar up to 54%, i.e. 404 ms. In walking patients after stroke, we show that gait marker performance differs between affected and less-affected body sides and optimal sensor positions change over a period of movement therapy intervention. For both case studies, we observe that optimal gait marker estimation performance benefits from personally selected sensor positions and robust algorithms. Our methodology enables wearable designers and algorithm developers to rapidly analyse the design options and create personalised systems where needed, e.g. for patients with movement disorders.Adrian DerungsOliver AmftNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Adrian Derungs Oliver Amft Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
description |
Abstract We present a fundamentally new approach to design and assess wearable motion systems based on biomechanical simulation and sensor data synthesis. We devise a methodology of personal biomechanical models and virtually attach sensor models to body parts, including sensor positions frequently considered for wearable devices. The simulation enables us to synthesise motion sensor data, which is subsequently considered as input for gait marker estimation algorithms. We evaluated our methodology in two case studies, including running athletes and hemiparetic patients. Our analysis shows that running speed affects gait marker estimation performance. Estimation error of stride duration varies between athletes across 834 simulated sensor positions and can soar up to 54%, i.e. 404 ms. In walking patients after stroke, we show that gait marker performance differs between affected and less-affected body sides and optimal sensor positions change over a period of movement therapy intervention. For both case studies, we observe that optimal gait marker estimation performance benefits from personally selected sensor positions and robust algorithms. Our methodology enables wearable designers and algorithm developers to rapidly analyse the design options and create personalised systems where needed, e.g. for patients with movement disorders. |
format |
article |
author |
Adrian Derungs Oliver Amft |
author_facet |
Adrian Derungs Oliver Amft |
author_sort |
Adrian Derungs |
title |
Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
title_short |
Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
title_full |
Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
title_fullStr |
Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
title_full_unstemmed |
Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
title_sort |
estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/ca5c4f25e12b463190f470f24354f167 |
work_keys_str_mv |
AT adrianderungs estimatingwearablemotionsensorperformancefrompersonalbiomechanicalmodelsandsensordatasynthesis AT oliveramft estimatingwearablemotionsensorperformancefrompersonalbiomechanicalmodelsandsensordatasynthesis |
_version_ |
1718385899950047232 |