Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations
Abstract The scalability, error correction and practical problem solving are important challenges for quantum computing (QC) as more emphasized by quantum supremacy (QS) experiments. Quantum path computing (QPC), recently introduced for linear optic based QCs as an unconventional design, targets to...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca5ecba615da4ce797e5580f577ac7ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ca5ecba615da4ce797e5580f577ac7ac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ca5ecba615da4ce797e5580f577ac7ac2021-12-02T16:32:12ZTheory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations10.1038/s41598-020-67364-02045-2322https://doaj.org/article/ca5ecba615da4ce797e5580f577ac7ac2020-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-67364-0https://doaj.org/toc/2045-2322Abstract The scalability, error correction and practical problem solving are important challenges for quantum computing (QC) as more emphasized by quantum supremacy (QS) experiments. Quantum path computing (QPC), recently introduced for linear optic based QCs as an unconventional design, targets to obtain scalability and practical problem solving. It samples the intensity from the interference of exponentially increasing number of propagation paths obtained in multi-plane diffraction (MPD) of classical particle sources. QPC exploits MPD based quantum temporal correlations of the paths and freely entangled projections at different time instants, for the first time, with the classical light source and intensity measurement while not requiring photon interactions or single photon sources and receivers. In this article, photonic QPC is defined, theoretically modeled and numerically analyzed for arbitrary Fourier optical or quadratic phase set-ups while utilizing both Gaussian and Hermite-Gaussian source laser modes. Problem solving capabilities already including partial sum of Riemann theta functions are extended. Important future applications, implementation challenges and open issues such as universal computation and quantum circuit implementations determining the scope of QC capabilities are discussed. The applications include QS experiments reaching more than $$2^{100}$$ 2100 Feynman paths, quantum neuron implementations and solutions of nonlinear Schrödinger equation.Burhan GulbaharNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-23 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Burhan Gulbahar Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations |
description |
Abstract The scalability, error correction and practical problem solving are important challenges for quantum computing (QC) as more emphasized by quantum supremacy (QS) experiments. Quantum path computing (QPC), recently introduced for linear optic based QCs as an unconventional design, targets to obtain scalability and practical problem solving. It samples the intensity from the interference of exponentially increasing number of propagation paths obtained in multi-plane diffraction (MPD) of classical particle sources. QPC exploits MPD based quantum temporal correlations of the paths and freely entangled projections at different time instants, for the first time, with the classical light source and intensity measurement while not requiring photon interactions or single photon sources and receivers. In this article, photonic QPC is defined, theoretically modeled and numerically analyzed for arbitrary Fourier optical or quadratic phase set-ups while utilizing both Gaussian and Hermite-Gaussian source laser modes. Problem solving capabilities already including partial sum of Riemann theta functions are extended. Important future applications, implementation challenges and open issues such as universal computation and quantum circuit implementations determining the scope of QC capabilities are discussed. The applications include QS experiments reaching more than $$2^{100}$$ 2100 Feynman paths, quantum neuron implementations and solutions of nonlinear Schrödinger equation. |
format |
article |
author |
Burhan Gulbahar |
author_facet |
Burhan Gulbahar |
author_sort |
Burhan Gulbahar |
title |
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations |
title_short |
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations |
title_full |
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations |
title_fullStr |
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations |
title_full_unstemmed |
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations |
title_sort |
theory of quantum path computing with fourier optics and future applications for quantum supremacy, neural networks and nonlinear schrödinger equations |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/ca5ecba615da4ce797e5580f577ac7ac |
work_keys_str_mv |
AT burhangulbahar theoryofquantumpathcomputingwithfourieropticsandfutureapplicationsforquantumsupremacyneuralnetworksandnonlinearschrodingerequations |
_version_ |
1718383835480064000 |