muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data

Single-cell transcriptomics enhanced our ability to profile heterogeneous cell populations. It is not known which statistical frameworks are performant to detect subpopulation-level responses. Here, the authors developed a simulation framework to evaluate various methods across a range of scenarios.

Guardado en:
Detalles Bibliográficos
Autores principales: Helena L. Crowell, Charlotte Soneson, Pierre-Luc Germain, Daniela Calini, Ludovic Collin, Catarina Raposo, Dheeraj Malhotra, Mark D. Robinson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/ca630df4491c4fa29d160b6e84f04cc4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single-cell transcriptomics enhanced our ability to profile heterogeneous cell populations. It is not known which statistical frameworks are performant to detect subpopulation-level responses. Here, the authors developed a simulation framework to evaluate various methods across a range of scenarios.