Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
Background:. Influenza virus is a major cause of acute hypoxemic respiratory failure. Early identification of patients who will suffer severe complications can help stratify patients for clinical trials and plan for resource use in case of pandemic. Objective:. We aimed to identify which clinical va...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wolters Kluwer
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca6d7df3e8c14e91a9b1f188a01d97ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ca6d7df3e8c14e91a9b1f188a01d97ae |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ca6d7df3e8c14e91a9b1f188a01d97ae2021-11-25T07:51:49ZMachine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza2639-802810.1097/CCE.0000000000000175https://doaj.org/article/ca6d7df3e8c14e91a9b1f188a01d97ae2020-08-01T00:00:00Zhttp://journals.lww.com/10.1097/CCE.0000000000000175https://doaj.org/toc/2639-8028Background:. Influenza virus is a major cause of acute hypoxemic respiratory failure. Early identification of patients who will suffer severe complications can help stratify patients for clinical trials and plan for resource use in case of pandemic. Objective:. We aimed to identify which clinical variables best predict prolonged acute hypoxemic respiratory failure in influenza-infected critically ill children. Acute hypoxemic respiratory failure was defined using hypoxemia cutoffs from international consensus definitions of acute respiratory distress syndrome in patients with ventilatory support. Prolonged acute hypoxemic respiratory failure was defined by acute hypoxemic respiratory failure criteria still present at PICU day 7. Derivation Cohort:. In this prospective multicenter study across 34 PICUs from November 2009 to April 2018, we included children (< 18 yr) without comorbid risk factors for severe disease. Validation Cohort:. We used a Monte Carlo cross validation method with N2 random train-test splits at a 70–30% proportion per model. Prediction Model:. Using clinical data at admission (day 1) and closest to 8 am on PICU day 2, we calculated the area under the receiver operating characteristic curve using random forests machine learning algorithms and logistic regression. Results:. We included 258 children (median age = 6.5 yr) and 11 (4.2%) died. By day 2, 65% (n = 165) had acute hypoxemic respiratory failure dropping to 26% (n = 67) with prolonged acute hypoxemic respiratory failure by day 7. Those with prolonged acute hypoxemic respiratory failure had a longer ICU stay (16.5 vs 4.0 d; p < 0.001) and higher mortality (13.4% vs 1.0%). A multivariable model using random forests with 10 admission and eight day 2 variables performed best (0.93 area under the receiver operating characteristic curve; 95 CI%: 0.90–0.95) where respiratory rate, Fio2, and pH on day 2 were the most important factors. Conclusions:. In this prospective multicentric study, most children with influenza virus–related respiratory failure with prolonged acute hypoxemic respiratory failure can be identified early in their hospital course applying machine learning onto routine clinical data. Further validation is needed prior to bedside implementation.Michaël S. Sauthier, MD MBIPhilippe A. Jouvet, MD, PhDMBAMargaret M. Newhams,, MPHAdrienne G. Randolph, MD, MScfor the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network InvestigatorsMichele KongRonald C. Sanders, JrOlivia K. IrbyDavid TellezKatri TyppoBarry MarkovitzNatalie CvijanovichHeidi FloriAdam SchwarzNick AnasPatrick McQuillenPeter MouraniJohn S. Giuliano, Jr.Gwenn McLaughlinMatthew PadenKeiko TarquinioBria M. CoatesNeethi PintoJuliane Bubeck WardenburgJanice SullivanVicki MontgomeryAdrienne G. RandolphAnna A. AganTanya NovakMargaret M. NewhamsMelania BembeaSapna R. KudchadkarStephen C. KurachekMary E. HartmanEdward J. TruemperSidharth MahapatraSholeen NettDaniel L. LevinKate G. AckermanRyan NofzigerSteven L. SheinMark W. HallNeal ThomasScott L. WeissJulie FitzgeraldRenee HiggersonLaura L. LoftisRainer G. GedeitWolters KluwerarticleMedical emergencies. Critical care. Intensive care. First aidRC86-88.9ENCritical Care Explorations, Vol 2, Iss 8, p e0175 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medical emergencies. Critical care. Intensive care. First aid RC86-88.9 |
spellingShingle |
Medical emergencies. Critical care. Intensive care. First aid RC86-88.9 Michaël S. Sauthier, MD MBI Philippe A. Jouvet, MD, PhDMBA Margaret M. Newhams,, MPH Adrienne G. Randolph, MD, MSc for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators Michele Kong Ronald C. Sanders, Jr Olivia K. Irby David Tellez Katri Typpo Barry Markovitz Natalie Cvijanovich Heidi Flori Adam Schwarz Nick Anas Patrick McQuillen Peter Mourani John S. Giuliano, Jr. Gwenn McLaughlin Matthew Paden Keiko Tarquinio Bria M. Coates Neethi Pinto Juliane Bubeck Wardenburg Janice Sullivan Vicki Montgomery Adrienne G. Randolph Anna A. Agan Tanya Novak Margaret M. Newhams Melania Bembea Sapna R. Kudchadkar Stephen C. Kurachek Mary E. Hartman Edward J. Truemper Sidharth Mahapatra Sholeen Nett Daniel L. Levin Kate G. Ackerman Ryan Nofziger Steven L. Shein Mark W. Hall Neal Thomas Scott L. Weiss Julie Fitzgerald Renee Higgerson Laura L. Loftis Rainer G. Gedeit Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza |
description |
Background:. Influenza virus is a major cause of acute hypoxemic respiratory failure. Early identification of patients who will suffer severe complications can help stratify patients for clinical trials and plan for resource use in case of pandemic.
Objective:. We aimed to identify which clinical variables best predict prolonged acute hypoxemic respiratory failure in influenza-infected critically ill children. Acute hypoxemic respiratory failure was defined using hypoxemia cutoffs from international consensus definitions of acute respiratory distress syndrome in patients with ventilatory support. Prolonged acute hypoxemic respiratory failure was defined by acute hypoxemic respiratory failure criteria still present at PICU day 7.
Derivation Cohort:. In this prospective multicenter study across 34 PICUs from November 2009 to April 2018, we included children (< 18 yr) without comorbid risk factors for severe disease.
Validation Cohort:. We used a Monte Carlo cross validation method with N2 random train-test splits at a 70–30% proportion per model.
Prediction Model:. Using clinical data at admission (day 1) and closest to 8 am on PICU day 2, we calculated the area under the receiver operating characteristic curve using random forests machine learning algorithms and logistic regression.
Results:. We included 258 children (median age = 6.5 yr) and 11 (4.2%) died. By day 2, 65% (n = 165) had acute hypoxemic respiratory failure dropping to 26% (n = 67) with prolonged acute hypoxemic respiratory failure by day 7. Those with prolonged acute hypoxemic respiratory failure had a longer ICU stay (16.5 vs 4.0 d; p < 0.001) and higher mortality (13.4% vs 1.0%). A multivariable model using random forests with 10 admission and eight day 2 variables performed best (0.93 area under the receiver operating characteristic curve; 95 CI%: 0.90–0.95) where respiratory rate, Fio2, and pH on day 2 were the most important factors.
Conclusions:. In this prospective multicentric study, most children with influenza virus–related respiratory failure with prolonged acute hypoxemic respiratory failure can be identified early in their hospital course applying machine learning onto routine clinical data. Further validation is needed prior to bedside implementation. |
format |
article |
author |
Michaël S. Sauthier, MD MBI Philippe A. Jouvet, MD, PhDMBA Margaret M. Newhams,, MPH Adrienne G. Randolph, MD, MSc for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators Michele Kong Ronald C. Sanders, Jr Olivia K. Irby David Tellez Katri Typpo Barry Markovitz Natalie Cvijanovich Heidi Flori Adam Schwarz Nick Anas Patrick McQuillen Peter Mourani John S. Giuliano, Jr. Gwenn McLaughlin Matthew Paden Keiko Tarquinio Bria M. Coates Neethi Pinto Juliane Bubeck Wardenburg Janice Sullivan Vicki Montgomery Adrienne G. Randolph Anna A. Agan Tanya Novak Margaret M. Newhams Melania Bembea Sapna R. Kudchadkar Stephen C. Kurachek Mary E. Hartman Edward J. Truemper Sidharth Mahapatra Sholeen Nett Daniel L. Levin Kate G. Ackerman Ryan Nofziger Steven L. Shein Mark W. Hall Neal Thomas Scott L. Weiss Julie Fitzgerald Renee Higgerson Laura L. Loftis Rainer G. Gedeit |
author_facet |
Michaël S. Sauthier, MD MBI Philippe A. Jouvet, MD, PhDMBA Margaret M. Newhams,, MPH Adrienne G. Randolph, MD, MSc for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators Michele Kong Ronald C. Sanders, Jr Olivia K. Irby David Tellez Katri Typpo Barry Markovitz Natalie Cvijanovich Heidi Flori Adam Schwarz Nick Anas Patrick McQuillen Peter Mourani John S. Giuliano, Jr. Gwenn McLaughlin Matthew Paden Keiko Tarquinio Bria M. Coates Neethi Pinto Juliane Bubeck Wardenburg Janice Sullivan Vicki Montgomery Adrienne G. Randolph Anna A. Agan Tanya Novak Margaret M. Newhams Melania Bembea Sapna R. Kudchadkar Stephen C. Kurachek Mary E. Hartman Edward J. Truemper Sidharth Mahapatra Sholeen Nett Daniel L. Levin Kate G. Ackerman Ryan Nofziger Steven L. Shein Mark W. Hall Neal Thomas Scott L. Weiss Julie Fitzgerald Renee Higgerson Laura L. Loftis Rainer G. Gedeit |
author_sort |
Michaël S. Sauthier, MD MBI |
title |
Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza |
title_short |
Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza |
title_full |
Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza |
title_fullStr |
Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza |
title_full_unstemmed |
Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza |
title_sort |
machine learning predicts prolonged acute hypoxemic respiratory failure in pediatric severe influenza |
publisher |
Wolters Kluwer |
publishDate |
2020 |
url |
https://doaj.org/article/ca6d7df3e8c14e91a9b1f188a01d97ae |
work_keys_str_mv |
AT michaelssauthiermdmbi machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT philippeajouvetmdphdmba machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT margaretmnewhamsmph machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT adriennegrandolphmdmsc machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT forthepediatricacutelunginjuryandsepsisinvestigatorspalisipediatricintensivecareinfluenzapicflunetworkinvestigators machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT michelekong machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT ronaldcsandersjr machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT oliviakirby machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT davidtellez machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT katrityppo machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT barrymarkovitz machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT nataliecvijanovich machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT heidiflori machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT adamschwarz machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT nickanas machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT patrickmcquillen machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT petermourani machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT johnsgiulianojr machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT gwennmclaughlin machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT matthewpaden machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT keikotarquinio machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT briamcoates machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT neethipinto machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT julianebubeckwardenburg machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT janicesullivan machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT vickimontgomery machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT adriennegrandolph machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT annaaagan machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT tanyanovak machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT margaretmnewhams machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT melaniabembea machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT sapnarkudchadkar machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT stephenckurachek machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT maryehartman machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT edwardjtruemper machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT sidharthmahapatra machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT sholeennett machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT danielllevin machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT kategackerman machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT ryannofziger machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT stevenlshein machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT markwhall machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT nealthomas machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT scottlweiss machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT juliefitzgerald machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT reneehiggerson machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT lauralloftis machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza AT rainerggedeit machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza |
_version_ |
1718413646925660160 |