Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza

Background:. Influenza virus is a major cause of acute hypoxemic respiratory failure. Early identification of patients who will suffer severe complications can help stratify patients for clinical trials and plan for resource use in case of pandemic. Objective:. We aimed to identify which clinical va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michaël S. Sauthier, MD MBI, Philippe A. Jouvet, MD, PhDMBA, Margaret M. Newhams,, MPH, Adrienne G. Randolph, MD, MSc, for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators, Michele Kong, Ronald C. Sanders, Jr, Olivia K. Irby, David Tellez, Katri Typpo, Barry Markovitz, Natalie Cvijanovich, Heidi Flori, Adam Schwarz, Nick Anas, Patrick McQuillen, Peter Mourani, John S. Giuliano, Jr., Gwenn McLaughlin, Matthew Paden, Keiko Tarquinio, Bria M. Coates, Neethi Pinto, Juliane Bubeck Wardenburg, Janice Sullivan, Vicki Montgomery, Adrienne G. Randolph, Anna A. Agan, Tanya Novak, Margaret M. Newhams, Melania Bembea, Sapna R. Kudchadkar, Stephen C. Kurachek, Mary E. Hartman, Edward J. Truemper, Sidharth Mahapatra, Sholeen Nett, Daniel L. Levin, Kate G. Ackerman, Ryan Nofziger, Steven L. Shein, Mark W. Hall, Neal Thomas, Scott L. Weiss, Julie Fitzgerald, Renee Higgerson, Laura L. Loftis, Rainer G. Gedeit
Formato: article
Lenguaje:EN
Publicado: Wolters Kluwer 2020
Materias:
Acceso en línea:https://doaj.org/article/ca6d7df3e8c14e91a9b1f188a01d97ae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ca6d7df3e8c14e91a9b1f188a01d97ae
record_format dspace
spelling oai:doaj.org-article:ca6d7df3e8c14e91a9b1f188a01d97ae2021-11-25T07:51:49ZMachine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza2639-802810.1097/CCE.0000000000000175https://doaj.org/article/ca6d7df3e8c14e91a9b1f188a01d97ae2020-08-01T00:00:00Zhttp://journals.lww.com/10.1097/CCE.0000000000000175https://doaj.org/toc/2639-8028Background:. Influenza virus is a major cause of acute hypoxemic respiratory failure. Early identification of patients who will suffer severe complications can help stratify patients for clinical trials and plan for resource use in case of pandemic. Objective:. We aimed to identify which clinical variables best predict prolonged acute hypoxemic respiratory failure in influenza-infected critically ill children. Acute hypoxemic respiratory failure was defined using hypoxemia cutoffs from international consensus definitions of acute respiratory distress syndrome in patients with ventilatory support. Prolonged acute hypoxemic respiratory failure was defined by acute hypoxemic respiratory failure criteria still present at PICU day 7. Derivation Cohort:. In this prospective multicenter study across 34 PICUs from November 2009 to April 2018, we included children (< 18 yr) without comorbid risk factors for severe disease. Validation Cohort:. We used a Monte Carlo cross validation method with N2 random train-test splits at a 70–30% proportion per model. Prediction Model:. Using clinical data at admission (day 1) and closest to 8 am on PICU day 2, we calculated the area under the receiver operating characteristic curve using random forests machine learning algorithms and logistic regression. Results:. We included 258 children (median age = 6.5 yr) and 11 (4.2%) died. By day 2, 65% (n = 165) had acute hypoxemic respiratory failure dropping to 26% (n = 67) with prolonged acute hypoxemic respiratory failure by day 7. Those with prolonged acute hypoxemic respiratory failure had a longer ICU stay (16.5 vs 4.0 d; p < 0.001) and higher mortality (13.4% vs 1.0%). A multivariable model using random forests with 10 admission and eight day 2 variables performed best (0.93 area under the receiver operating characteristic curve; 95 CI%: 0.90–0.95) where respiratory rate, Fio2, and pH on day 2 were the most important factors. Conclusions:. In this prospective multicentric study, most children with influenza virus–related respiratory failure with prolonged acute hypoxemic respiratory failure can be identified early in their hospital course applying machine learning onto routine clinical data. Further validation is needed prior to bedside implementation.Michaël S. Sauthier, MD MBIPhilippe A. Jouvet, MD, PhDMBAMargaret M. Newhams,, MPHAdrienne G. Randolph, MD, MScfor the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network InvestigatorsMichele KongRonald C. Sanders, JrOlivia K. IrbyDavid TellezKatri TyppoBarry MarkovitzNatalie CvijanovichHeidi FloriAdam SchwarzNick AnasPatrick McQuillenPeter MouraniJohn S. Giuliano, Jr.Gwenn McLaughlinMatthew PadenKeiko TarquinioBria M. CoatesNeethi PintoJuliane Bubeck WardenburgJanice SullivanVicki MontgomeryAdrienne G. RandolphAnna A. AganTanya NovakMargaret M. NewhamsMelania BembeaSapna R. KudchadkarStephen C. KurachekMary E. HartmanEdward J. TruemperSidharth MahapatraSholeen NettDaniel L. LevinKate G. AckermanRyan NofzigerSteven L. SheinMark W. HallNeal ThomasScott L. WeissJulie FitzgeraldRenee HiggersonLaura L. LoftisRainer G. GedeitWolters KluwerarticleMedical emergencies. Critical care. Intensive care. First aidRC86-88.9ENCritical Care Explorations, Vol 2, Iss 8, p e0175 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medical emergencies. Critical care. Intensive care. First aid
RC86-88.9
spellingShingle Medical emergencies. Critical care. Intensive care. First aid
RC86-88.9
Michaël S. Sauthier, MD MBI
Philippe A. Jouvet, MD, PhDMBA
Margaret M. Newhams,, MPH
Adrienne G. Randolph, MD, MSc
for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators
Michele Kong
Ronald C. Sanders, Jr
Olivia K. Irby
David Tellez
Katri Typpo
Barry Markovitz
Natalie Cvijanovich
Heidi Flori
Adam Schwarz
Nick Anas
Patrick McQuillen
Peter Mourani
John S. Giuliano, Jr.
Gwenn McLaughlin
Matthew Paden
Keiko Tarquinio
Bria M. Coates
Neethi Pinto
Juliane Bubeck Wardenburg
Janice Sullivan
Vicki Montgomery
Adrienne G. Randolph
Anna A. Agan
Tanya Novak
Margaret M. Newhams
Melania Bembea
Sapna R. Kudchadkar
Stephen C. Kurachek
Mary E. Hartman
Edward J. Truemper
Sidharth Mahapatra
Sholeen Nett
Daniel L. Levin
Kate G. Ackerman
Ryan Nofziger
Steven L. Shein
Mark W. Hall
Neal Thomas
Scott L. Weiss
Julie Fitzgerald
Renee Higgerson
Laura L. Loftis
Rainer G. Gedeit
Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
description Background:. Influenza virus is a major cause of acute hypoxemic respiratory failure. Early identification of patients who will suffer severe complications can help stratify patients for clinical trials and plan for resource use in case of pandemic. Objective:. We aimed to identify which clinical variables best predict prolonged acute hypoxemic respiratory failure in influenza-infected critically ill children. Acute hypoxemic respiratory failure was defined using hypoxemia cutoffs from international consensus definitions of acute respiratory distress syndrome in patients with ventilatory support. Prolonged acute hypoxemic respiratory failure was defined by acute hypoxemic respiratory failure criteria still present at PICU day 7. Derivation Cohort:. In this prospective multicenter study across 34 PICUs from November 2009 to April 2018, we included children (< 18 yr) without comorbid risk factors for severe disease. Validation Cohort:. We used a Monte Carlo cross validation method with N2 random train-test splits at a 70–30% proportion per model. Prediction Model:. Using clinical data at admission (day 1) and closest to 8 am on PICU day 2, we calculated the area under the receiver operating characteristic curve using random forests machine learning algorithms and logistic regression. Results:. We included 258 children (median age = 6.5 yr) and 11 (4.2%) died. By day 2, 65% (n = 165) had acute hypoxemic respiratory failure dropping to 26% (n = 67) with prolonged acute hypoxemic respiratory failure by day 7. Those with prolonged acute hypoxemic respiratory failure had a longer ICU stay (16.5 vs 4.0 d; p < 0.001) and higher mortality (13.4% vs 1.0%). A multivariable model using random forests with 10 admission and eight day 2 variables performed best (0.93 area under the receiver operating characteristic curve; 95 CI%: 0.90–0.95) where respiratory rate, Fio2, and pH on day 2 were the most important factors. Conclusions:. In this prospective multicentric study, most children with influenza virus–related respiratory failure with prolonged acute hypoxemic respiratory failure can be identified early in their hospital course applying machine learning onto routine clinical data. Further validation is needed prior to bedside implementation.
format article
author Michaël S. Sauthier, MD MBI
Philippe A. Jouvet, MD, PhDMBA
Margaret M. Newhams,, MPH
Adrienne G. Randolph, MD, MSc
for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators
Michele Kong
Ronald C. Sanders, Jr
Olivia K. Irby
David Tellez
Katri Typpo
Barry Markovitz
Natalie Cvijanovich
Heidi Flori
Adam Schwarz
Nick Anas
Patrick McQuillen
Peter Mourani
John S. Giuliano, Jr.
Gwenn McLaughlin
Matthew Paden
Keiko Tarquinio
Bria M. Coates
Neethi Pinto
Juliane Bubeck Wardenburg
Janice Sullivan
Vicki Montgomery
Adrienne G. Randolph
Anna A. Agan
Tanya Novak
Margaret M. Newhams
Melania Bembea
Sapna R. Kudchadkar
Stephen C. Kurachek
Mary E. Hartman
Edward J. Truemper
Sidharth Mahapatra
Sholeen Nett
Daniel L. Levin
Kate G. Ackerman
Ryan Nofziger
Steven L. Shein
Mark W. Hall
Neal Thomas
Scott L. Weiss
Julie Fitzgerald
Renee Higgerson
Laura L. Loftis
Rainer G. Gedeit
author_facet Michaël S. Sauthier, MD MBI
Philippe A. Jouvet, MD, PhDMBA
Margaret M. Newhams,, MPH
Adrienne G. Randolph, MD, MSc
for the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Pediatric Intensive Care Influenza (PICFLU) Network Investigators
Michele Kong
Ronald C. Sanders, Jr
Olivia K. Irby
David Tellez
Katri Typpo
Barry Markovitz
Natalie Cvijanovich
Heidi Flori
Adam Schwarz
Nick Anas
Patrick McQuillen
Peter Mourani
John S. Giuliano, Jr.
Gwenn McLaughlin
Matthew Paden
Keiko Tarquinio
Bria M. Coates
Neethi Pinto
Juliane Bubeck Wardenburg
Janice Sullivan
Vicki Montgomery
Adrienne G. Randolph
Anna A. Agan
Tanya Novak
Margaret M. Newhams
Melania Bembea
Sapna R. Kudchadkar
Stephen C. Kurachek
Mary E. Hartman
Edward J. Truemper
Sidharth Mahapatra
Sholeen Nett
Daniel L. Levin
Kate G. Ackerman
Ryan Nofziger
Steven L. Shein
Mark W. Hall
Neal Thomas
Scott L. Weiss
Julie Fitzgerald
Renee Higgerson
Laura L. Loftis
Rainer G. Gedeit
author_sort Michaël S. Sauthier, MD MBI
title Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
title_short Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
title_full Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
title_fullStr Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
title_full_unstemmed Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza
title_sort machine learning predicts prolonged acute hypoxemic respiratory failure in pediatric severe influenza
publisher Wolters Kluwer
publishDate 2020
url https://doaj.org/article/ca6d7df3e8c14e91a9b1f188a01d97ae
work_keys_str_mv AT michaelssauthiermdmbi machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT philippeajouvetmdphdmba machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT margaretmnewhamsmph machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT adriennegrandolphmdmsc machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT forthepediatricacutelunginjuryandsepsisinvestigatorspalisipediatricintensivecareinfluenzapicflunetworkinvestigators machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT michelekong machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT ronaldcsandersjr machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT oliviakirby machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT davidtellez machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT katrityppo machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT barrymarkovitz machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT nataliecvijanovich machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT heidiflori machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT adamschwarz machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT nickanas machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT patrickmcquillen machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT petermourani machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT johnsgiulianojr machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT gwennmclaughlin machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT matthewpaden machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT keikotarquinio machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT briamcoates machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT neethipinto machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT julianebubeckwardenburg machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT janicesullivan machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT vickimontgomery machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT adriennegrandolph machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT annaaagan machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT tanyanovak machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT margaretmnewhams machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT melaniabembea machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT sapnarkudchadkar machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT stephenckurachek machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT maryehartman machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT edwardjtruemper machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT sidharthmahapatra machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT sholeennett machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT danielllevin machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT kategackerman machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT ryannofziger machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT stevenlshein machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT markwhall machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT nealthomas machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT scottlweiss machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT juliefitzgerald machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT reneehiggerson machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT lauralloftis machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
AT rainerggedeit machinelearningpredictsprolongedacutehypoxemicrespiratoryfailureinpediatricsevereinfluenza
_version_ 1718413646925660160