Deep learning based prediction of extraction difficulty for mandibular third molars
Abstract This paper proposes a convolutional neural network (CNN)-based deep learning model for predicting the difficulty of extracting a mandibular third molar using a panoramic radiographic image. The applied dataset includes a total of 1053 mandibular third molars from 600 preoperative panoramic...
Guardado en:
Autores principales: | Jeong-Hun Yoo, Han-Gyeol Yeom, WooSang Shin, Jong Pil Yun, Jong Hyun Lee, Seung Hyun Jeong, Hun Jun Lim, Jun Lee, Bong Chul Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca8290bdccde45128660e9a4deb20ddd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs
por: Seung Hyun Jeong, et al.
Publicado: (2020) -
Machine learning to predict distal caries in mandibular second molars associated with impacted third molars
por: Sung-Hwi Hur, et al.
Publicado: (2021) -
Spontaneous detachment of Streptococcus mutans biofilm by synergistic effect between zwitterion and sugar alcohol
por: Jong Hyun Lim, et al.
Publicado: (2017) -
CORRELATION OF IMPACTED MANDIBULAR THIRD MOLAR WITH INCIDENCE OF IPSILATERAL ANGLE AND CONDYLAR FRACTURES IN MANDIBULAR TRAUMA
por: Syed Yasir Ali Abidi, et al.
Publicado: (2020) -
Surgical extraction of the impacted mandibular third molar: Vestibular bone window technique
por: Janjić Bojan, et al.
Publicado: (2021)