Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
Abstract SARS-CoV-2 infection is characterized by a highly variable clinical course with patients experiencing asymptomatic infection all the way to requiring critical care support. This variation in clinical course has led physicians and scientists to study factors that may predispose certain indiv...
Enregistré dans:
Auteurs principaux: | John-William Sidhom, Alexander S. Baras |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ca8b01617b884c0dbc22dd42758dab8e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
par: John-William Sidhom, et autres
Publié: (2021) -
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
par: John-William Sidhom, et autres
Publié: (2021) -
A Framework to Identify Antigen-Expanded T Cell Receptor Clusters Within Complex Repertoires
par: Valentina Ceglia, et autres
Publié: (2021) -
Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2
par: Kanako Shimizu, et autres
Publié: (2021) -
Identifying key determinants and dynamics of SARS-CoV-2/ACE2 tight interaction.
par: Van A Ngo, et autres
Publié: (2021)