Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
Abstract SARS-CoV-2 infection is characterized by a highly variable clinical course with patients experiencing asymptomatic infection all the way to requiring critical care support. This variation in clinical course has led physicians and scientists to study factors that may predispose certain indiv...
Guardado en:
Autores principales: | John-William Sidhom, Alexander S. Baras |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca8b01617b884c0dbc22dd42758dab8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
A Framework to Identify Antigen-Expanded T Cell Receptor Clusters Within Complex Repertoires
por: Valentina Ceglia, et al.
Publicado: (2021) -
Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2
por: Kanako Shimizu, et al.
Publicado: (2021) -
Identifying key determinants and dynamics of SARS-CoV-2/ACE2 tight interaction.
por: Van A Ngo, et al.
Publicado: (2021)