Retrospective model-based inference guides model-free credit assignment
The reinforcement learning literature suggests decisions are based on a model-free system, operating retrospectively, and a model-based system, operating prospectively. Here, the authors show that a model-based retrospective inference of a reward’s cause, guides model-free credit-assignment.
Enregistré dans:
Auteurs principaux: | Rani Moran, Mehdi Keramati, Peter Dayan, Raymond J. Dolan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ca9bae169c454436895a7d3764634701 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Assigning the right credit to the wrong action: compulsivity in the general population is associated with augmented outcome-irrelevant value-based learning
par: Nitzan Shahar, et autres
Publié: (2021) -
Correction: Assigning the right credit to the wrong action: compulsivity in the general population is associated with augmented outcome-irrelevant value-based learning
par: Nitzan Shahar, et autres
Publié: (2021) -
Agency rescues competition for credit assignment among predictive cues from adverse learning conditions
par: Mihwa Kang, et autres
Publié: (2021) -
Model-free inference of direct network interactions from nonlinear collective dynamics
par: Jose Casadiego, et autres
Publié: (2017) -
Dynamic Traffic Assignment Model Based on GPS Data and Point of Interest (POI) in Shanghai
par: Xueying Song, et autres
Publié: (2021)