Retrospective model-based inference guides model-free credit assignment
The reinforcement learning literature suggests decisions are based on a model-free system, operating retrospectively, and a model-based system, operating prospectively. Here, the authors show that a model-based retrospective inference of a reward’s cause, guides model-free credit-assignment.
Guardado en:
Autores principales: | Rani Moran, Mehdi Keramati, Peter Dayan, Raymond J. Dolan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca9bae169c454436895a7d3764634701 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assigning the right credit to the wrong action: compulsivity in the general population is associated with augmented outcome-irrelevant value-based learning
por: Nitzan Shahar, et al.
Publicado: (2021) -
Correction: Assigning the right credit to the wrong action: compulsivity in the general population is associated with augmented outcome-irrelevant value-based learning
por: Nitzan Shahar, et al.
Publicado: (2021) -
Agency rescues competition for credit assignment among predictive cues from adverse learning conditions
por: Mihwa Kang, et al.
Publicado: (2021) -
Model-free inference of direct network interactions from nonlinear collective dynamics
por: Jose Casadiego, et al.
Publicado: (2017) -
Dynamic Traffic Assignment Model Based on GPS Data and Point of Interest (POI) in Shanghai
por: Xueying Song, et al.
Publicado: (2021)