On the construction of quadratic models for derivative-free trust-region algorithms
We consider derivative-free trust-region algorithms based on sampling approaches for convex constrained problems and discuss two conditions on the quadratic models for ensuring their global convergence. The first condition requires the poisedness of the sample sets, as usual in this context, while t...
Guardado en:
Autores principales: | Adriano Verdério, ElizabethW. Karas, LucasG. Pedroso, Katya Scheinberg |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cac5197b999a4be48e4bcfd4100b7410 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A comparison of four approaches from stochastic programming for large-scale unit-commitment
por: Wim van Ackooij
Publicado: (2017) -
Nonsmooth spectral gradient methods for unconstrained optimization
por: Milagros Loreto, et al.
Publicado: (2017) -
A globally convergent algorithm for MPCC
por: Abdeslam Kadrani, et al.
Publicado: (2015) -
Learning to steer nonlinear interior-point methods
por: Renke Kuhlmann
Publicado: (2019) -
Dualization and discretization of linear-quadratic control problems with bang–bang solutions
por: Walter Alt, et al.
Publicado: (2016)