On the construction of quadratic models for derivative-free trust-region algorithms
We consider derivative-free trust-region algorithms based on sampling approaches for convex constrained problems and discuss two conditions on the quadratic models for ensuring their global convergence. The first condition requires the poisedness of the sample sets, as usual in this context, while t...
Enregistré dans:
Auteurs principaux: | Adriano Verdério, ElizabethW. Karas, LucasG. Pedroso, Katya Scheinberg |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cac5197b999a4be48e4bcfd4100b7410 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A comparison of four approaches from stochastic programming for large-scale unit-commitment
par: Wim van Ackooij
Publié: (2017) -
Nonsmooth spectral gradient methods for unconstrained optimization
par: Milagros Loreto, et autres
Publié: (2017) -
A globally convergent algorithm for MPCC
par: Abdeslam Kadrani, et autres
Publié: (2015) -
Learning to steer nonlinear interior-point methods
par: Renke Kuhlmann
Publié: (2019) -
Dualization and discretization of linear-quadratic control problems with bang–bang solutions
par: Walter Alt, et autres
Publié: (2016)