Spectroscopic Evidence for an Additional Symmetry Breaking in the Nematic State of FeSe Superconductor

The iron-based superconductor FeSe has attracted much recent attention because of its simple crystal structure, distinct electronic structure, and rich physics exhibited by itself and its derivatives. Determination of its intrinsic electronic structure is crucial to understanding its physical proper...

Full description

Saved in:
Bibliographic Details
Main Authors: Cong Li, Xianxin Wu, Le Wang, Defa Liu, Yongqing Cai, Yang Wang, Qiang Gao, Chunyao Song, Jianwei Huang, Chenxiao Dong, Jing Liu, Ping Ai, Hailan Luo, ChaoHui Yin, Guodong Liu, Yuan Huang, Qingyan Wang, Xiaowen Jia, Fengfeng Zhang, Shenjin Zhang, Feng Yang, Zhimin Wang, Qinjun Peng, Zuyan Xu, Youguo Shi, Jiangping Hu, Tao Xiang, Lin Zhao, X. J. Zhou
Format: article
Language:EN
Published: American Physical Society 2020
Subjects:
Online Access:https://doaj.org/article/cacaa1d46e814156947342f83e988da7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The iron-based superconductor FeSe has attracted much recent attention because of its simple crystal structure, distinct electronic structure, and rich physics exhibited by itself and its derivatives. Determination of its intrinsic electronic structure is crucial to understanding its physical properties and superconductivity mechanism. Both theoretical and experimental studies so far have provided a picture that FeSe consists of one holelike Fermi surface around the Brillouin zone center in its nematic state. Here we report direct observation of two holelike Fermi surface sheets around the Brillouin zone center, and the splitting of the associated bands, in the nematic state of FeSe by taking high-resolution laser-based angle-resolved photoemission measurements. These results indicate that, in addition to nematic order and spin-orbit coupling, there is an additional order in FeSe that breaks either inversion or time-reversal symmetries. The new Fermi surface topology asks for reexamination of the existing theoretical and experimental understanding of FeSe and stimulates further efforts to identify the origin of the hidden order in its nematic state.