Predicting malaria epidemics in Burkina Faso with machine learning.
Accurately forecasting the case rate of malaria would enable key decision makers to intervene months before the onset of any outbreak, potentially saving lives. Until now, methods that forecast malaria have involved complicated numerical simulations that model transmission through a community. Here...
Guardado en:
Autores principales: | David Harvey, Wessel Valkenburg, Amara Amara |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cad02408f83d41498bde3809f8ecff53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Local clusters of malaria transmission in the district of Kaya (Burkina Faso)
por: T. Druetz, et al.
Publicado: (2014) -
Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diébougou health district, Burkina Faso, 2016–2017
por: Cédric S. Bationo, et al.
Publicado: (2021) -
Distribution systems of insecticide-treated bed nets for malaria control in rural Burkina Faso: cluster-randomized controlled trial.
por: Olaf Müller, et al.
Publicado: (2008) -
Contamination of street food with multidrug-resistant Salmonella, in Ouagadougou, Burkina Faso.
por: Marguerite E M Nikiema, et al.
Publicado: (2021) -
Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso
por: Antoine Sanou, et al.
Publicado: (2021)