A novel semi-supervised methodology for extracting tumor type-specific MRS sources in human brain data.
<h4>Background</h4>The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement i...
Guardado en:
Autores principales: | Sandra Ortega-Martorell, Héctor Ruiz, Alfredo Vellido, Iván Olier, Enrique Romero, Margarida Julià-Sapé, José D Martín, Ian H Jarman, Carles Arús, Paulo J G Lisboa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cad2e552d41c4d049216a0d24458c15f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Convex non-negative matrix factorization for brain tumor delimitation from MRSI data.
por: Sandra Ortega-Martorell, et al.
Publicado: (2012) -
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021) -
Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning.
por: Zhuoran Wang, et al.
Publicado: (2012) -
Full body virtual try‐on with semi‐self‐supervised learning
por: Hyug‐Jae Lee, et al.
Publicado: (2021) -
Malware detection based on semi-supervised learning with malware visualization
por: Tan Gao, et al.
Publicado: (2021)