Machine learning estimation of tissue optical properties
Abstract Dynamic, in vivo measurement of the optical properties of biological tissues is still an elusive and critically important problem. Here we develop a technique for inverting a Monte Carlo simulation to extract tissue optical properties from the statistical moments of the spatio-temporal resp...
Guardado en:
Autores principales: | Brett H. Hokr, Joel N. Bixler |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cad84211eeee413db0d3df40825ec13e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in automatic identification of flying insects using optical sensors and machine learning
por: Carsten Kirkeby, et al.
Publicado: (2021) -
Exploration of physiological sensors, features, and machine learning models for pain intensity estimation.
por: Fatemeh Pouromran, et al.
Publicado: (2021) -
Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns
por: Iman Hassaninia, et al.
Publicado: (2017) -
Comparison of machine learning methods for estimating case fatality ratios: An Ebola outbreak simulation study.
por: Alpha Forna, et al.
Publicado: (2021) -
Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging
por: Vikash Singh, et al.
Publicado: (2021)