Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays
Yu Zhao,1 Qi Xing,2 Jagadeesh Janjanam,3 Kun He,1,4 Fei Long,1 Ke-Bin Low,5 Ashutosh Tiwari,3 Feng Zhao,2 Reza Shahbazian-Yassar,1 Craig Friedrich,1,8 Tolou Shokuhfar1,6–81Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA; 2De...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cae0ab42771d4dc983952f7146d60bd1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cae0ab42771d4dc983952f7146d60bd1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cae0ab42771d4dc983952f7146d60bd12021-12-02T03:58:28ZFacile electrochemical synthesis of antimicrobial TiO2 nanotube arrays1178-2013https://doaj.org/article/cae0ab42771d4dc983952f7146d60bd12014-11-01T00:00:00Zhttp://www.dovepress.com/facile-electrochemical-synthesis-of-antimicrobial-tio2nbspnanotube-arr-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Yu Zhao,1 Qi Xing,2 Jagadeesh Janjanam,3 Kun He,1,4 Fei Long,1 Ke-Bin Low,5 Ashutosh Tiwari,3 Feng Zhao,2 Reza Shahbazian-Yassar,1 Craig Friedrich,1,8 Tolou Shokuhfar1,6–81Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA; 2Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA; 3Department of Chemistry, Michigan Technological University, Houghton, MI, USA; 4School of Materials Science and Engineering, Shandong University, Jinan, People’s Republic of China; 5Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA; 6Department of Physics, University of Illinois at Chicago, Chicago, IL, USA; 7Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA; 8Multi-Scale Technologies Institute, Michigan Technological University, Houghton, MI, USAAbstract: Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. Keywords: TiO2 nanotube arrays, anodization, AgO nanoparticles, antimicrobial, cytotoxicityZhao YXing QJanjanam JHe KLong FLow KBTiwari AZhao FShahbazian-Yassar RFriedrich CShokuhfar TDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 5177-5187 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Zhao Y Xing Q Janjanam J He K Long F Low KB Tiwari A Zhao F Shahbazian-Yassar R Friedrich C Shokuhfar T Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays |
description |
Yu Zhao,1 Qi Xing,2 Jagadeesh Janjanam,3 Kun He,1,4 Fei Long,1 Ke-Bin Low,5 Ashutosh Tiwari,3 Feng Zhao,2 Reza Shahbazian-Yassar,1 Craig Friedrich,1,8 Tolou Shokuhfar1,6–81Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA; 2Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA; 3Department of Chemistry, Michigan Technological University, Houghton, MI, USA; 4School of Materials Science and Engineering, Shandong University, Jinan, People’s Republic of China; 5Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA; 6Department of Physics, University of Illinois at Chicago, Chicago, IL, USA; 7Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA; 8Multi-Scale Technologies Institute, Michigan Technological University, Houghton, MI, USAAbstract: Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. Keywords: TiO2 nanotube arrays, anodization, AgO nanoparticles, antimicrobial, cytotoxicity |
format |
article |
author |
Zhao Y Xing Q Janjanam J He K Long F Low KB Tiwari A Zhao F Shahbazian-Yassar R Friedrich C Shokuhfar T |
author_facet |
Zhao Y Xing Q Janjanam J He K Long F Low KB Tiwari A Zhao F Shahbazian-Yassar R Friedrich C Shokuhfar T |
author_sort |
Zhao Y |
title |
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays |
title_short |
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays |
title_full |
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays |
title_fullStr |
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays |
title_full_unstemmed |
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays |
title_sort |
facile electrochemical synthesis of antimicrobial tio2 nanotube arrays |
publisher |
Dove Medical Press |
publishDate |
2014 |
url |
https://doaj.org/article/cae0ab42771d4dc983952f7146d60bd1 |
work_keys_str_mv |
AT zhaoy facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT xingq facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT janjanamj facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT hek facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT longf facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT lowkb facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT tiwaria facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT zhaof facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT shahbazianyassarr facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT friedrichc facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays AT shokuhfart facileelectrochemicalsynthesisofantimicrobialtio2nbspnanotubearrays |
_version_ |
1718401517931724800 |