Maturation trajectories and transcriptional landscape of plasmablasts and autoreactive B cells in COVID-19
Summary: In parasite and viral infections, aberrant B cell responses can suppress germinal center reactions thereby blunting long-lived memory and may provoke immunopathology including autoimmunity. Using COVID-19 as model, we set out to identify serological, cellular, and transcriptomic imprints of...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cae40debf2d347178638ee4c63b42850 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Summary: In parasite and viral infections, aberrant B cell responses can suppress germinal center reactions thereby blunting long-lived memory and may provoke immunopathology including autoimmunity. Using COVID-19 as model, we set out to identify serological, cellular, and transcriptomic imprints of pathological responses linked to autoreactive B cells at single-cell resolution. We show that excessive plasmablast expansions are prognostically adverse and correlate with autoantibody production but do not hinder the formation of neutralizing antibodies. Although plasmablasts followed interleukin-4 (IL-4) and BAFF-driven developmental trajectories, were polyclonal, and not enriched in autoreactive B cells, we identified two memory populations (CD80+/ISG15+ and CD11c+/SOX5+/T-bet+/−) with immunogenetic and transcriptional signs of autoreactivity that may be the cellular source of autoantibodies in COVID-19 and that may persist beyond recovery. Immunomodulatory interventions discouraging such adverse responses may be useful in selected patients to shift the balance from autoreactivity toward long-term memory. |
---|