Knockdown of long noncoding RNA GAS5 reduces vascular smooth muscle cell apoptosis by inactivating EZH2-mediated RIG-I signaling pathway in abdominal aortic aneurysm
Abstract Background Abdominal aortic aneurysm (AAA), an irreversible cardiovascular disease prevalent in the artery, causes the increase of the aneurysm diameter over time, and is a fatal phenomenon inducing sidewall rupture. Long noncoding RNAs (lncRNAs) serve as promising biomarkers for AAA. In th...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cae899a122744dfda01c458551a69652 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background Abdominal aortic aneurysm (AAA), an irreversible cardiovascular disease prevalent in the artery, causes the increase of the aneurysm diameter over time, and is a fatal phenomenon inducing sidewall rupture. Long noncoding RNAs (lncRNAs) serve as promising biomarkers for AAA. In the present study, we sought to define the role of lncRNA growth-arrest-specific transcript 5 (GAS5) in growth of smooth muscle cells (SMC) and progression of AAA. Methods Initially, we established angiotensin II (Ang II)-induced AAA mouse models and Ang II-treated vascular SMC model. RT-qPCR and Western blot analysis were adopted to determine expression of GAS5 and zeste homolog 2 (EZH2). After ectopic expression and depletion experiments in Ang II-treated mice and vascular SMCs, cell apoptosis was detected in SMCs using flow cytometry and in mice using TUNEL staining. The binding of GAS5 and EZH2 was evaluated using RNA binding protein immunoprecipitation (RIP) and Co-IP assays. Results Increased GAS5 and RIG-I but decreased EZH2 were found in aortic tissues of AAA mice. EZH2 overexpression inhibited AAA formation and suppressed SMC apoptosis. Functionally, EZH2 blocked the RIG-I signaling pathway and consequently inhibited SMC apoptosis. GAS5 regulated EZH2 transcription in a negative manner in SMCs. Knockdown of GAS5 attenuated SMC apoptosis, which was reversed by EZH2 inhibition or RIG-I overexpression. Conclusions The current study demonstrated that GAS5 induced SMC apoptosis and subsequent AAA onset by activating EZH2-mediated RIG-I signaling pathway, highlighting GAS5 as a novel biomarker for AAA. |
---|