Dual Head and Dual Attention in Deep Learning for End-to-End EEG Motor Imagery Classification
Event-Related Desynchronization (ERD) or Electroencephalogram (EEG) wavelet is essential for motor imagery (MI) classification and BMI (Brain–Machine Interface) application. However, it is difficult to recognize multiple tasks for non-trained subjects that are indispensable for the complexities of t...
Guardado en:
Autores principales: | Meiyan Xu, Junfeng Yao, Hualiang Ni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cafd732462fd4b6ab1780d2922d7139b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A motor imagery during blind action is guided by the same foci of attention as actual performance in a sample comprising females
por: Bassem Khalaf
Publicado: (2014) -
Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
por: Jun Yang, et al.
Publicado: (2021) -
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
por: Amira Echtioui, et al.
Publicado: (2021) -
Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets
por: Minh Tran Duc Nguyen, et al.
Publicado: (2021) -
A novel strategy for driving car brain–computer interfaces: Discrimination of EEG-based visual-motor imagery
por: Zhou Zhouzhou, et al.
Publicado: (2021)