Supporting elimination of lymphatic filariasis in Samoa by predicting locations of residual infection using machine learning and geostatistics
Abstract The global elimination of lymphatic filariasis (LF) is a major focus of the World Health Organization. One key challenge is locating residual infections that can perpetuate the transmission cycle. We show how a targeted sampling strategy using predictions from a geospatial model, combining...
Guardado en:
Autores principales: | Helen J. Mayfield, Hugh Sturrock, Benjamin F. Arnold, Ricardo Andrade-Pacheco, Therese Kearns, Patricia Graves, Take Naseri, Robert Thomsen, Katherine Gass, Colleen L. Lau |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cb04387885e54caa9663c31ec57feff6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping, bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa.
por: Hannah Slater, et al.
Publicado: (2013) -
Global elimination of lymphatic filariasis: a "mass uprising of compassion".
por: David G Addiss
Publicado: (2013) -
Lymphatic filariasis elimination in the Dominican Republic: History, progress, and remaining steps.
por: Manuel Gonzales, et al.
Publicado: (2021) -
Assessing factors influencing communities' acceptability of mass drug administration for the elimination of lymphatic filariasis in Guyana.
por: Reza A Niles, et al.
Publicado: (2021) -
The role of personal opinions and experiences in compliance with mass drug administration for lymphatic filariasis elimination in Kenya.
por: Doris W Njomo, et al.
Publicado: (2012)