Imbalance-Aware Machine Learning for Predicting Rare and Common Disease-Associated Non-Coding Variants
Abstract Disease and trait-associated variants represent a tiny minority of all known genetic variation, and therefore there is necessarily an imbalance between the small set of available disease-associated and the much larger set of non-deleterious genomic variation, especially in non-coding regula...
Guardado en:
Autores principales: | Max Schubach, Matteo Re, Peter N. Robinson, Giorgio Valentini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cb143f66e0ab410fb2077b350ce7d69e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of common non-coding variants at 1p22 that are functional for non-syndromic orofacial clefting
por: Huan Liu, et al.
Publicado: (2017) -
Common sequence variants affect molecular function more than rare variants?
por: Yannick Mahlich, et al.
Publicado: (2017) -
Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic association in prostate cancer.
por: Edward J Saunders, et al.
Publicado: (2014) -
Association of low-frequency and rare coding variants with information processing speed
por: Jan Bressler, et al.
Publicado: (2021) -
Comprehensive analysis of NRG1 common and rare variants in Hirschsprung patients.
por: Berta Luzón-Toro, et al.
Publicado: (2012)