Predicting materials properties without crystal structure: deep representation learning from stoichiometry
Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cb261c1294be401abf3c4d88070efdba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cb261c1294be401abf3c4d88070efdba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cb261c1294be401abf3c4d88070efdba2021-12-02T10:48:00ZPredicting materials properties without crystal structure: deep representation learning from stoichiometry10.1038/s41467-020-19964-72041-1723https://doaj.org/article/cb261c1294be401abf3c4d88070efdba2020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19964-7https://doaj.org/toc/2041-1723Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.Rhys E. A. GoodallAlpha A. LeeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Rhys E. A. Goodall Alpha A. Lee Predicting materials properties without crystal structure: deep representation learning from stoichiometry |
description |
Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions. |
format |
article |
author |
Rhys E. A. Goodall Alpha A. Lee |
author_facet |
Rhys E. A. Goodall Alpha A. Lee |
author_sort |
Rhys E. A. Goodall |
title |
Predicting materials properties without crystal structure: deep representation learning from stoichiometry |
title_short |
Predicting materials properties without crystal structure: deep representation learning from stoichiometry |
title_full |
Predicting materials properties without crystal structure: deep representation learning from stoichiometry |
title_fullStr |
Predicting materials properties without crystal structure: deep representation learning from stoichiometry |
title_full_unstemmed |
Predicting materials properties without crystal structure: deep representation learning from stoichiometry |
title_sort |
predicting materials properties without crystal structure: deep representation learning from stoichiometry |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/cb261c1294be401abf3c4d88070efdba |
work_keys_str_mv |
AT rhyseagoodall predictingmaterialspropertieswithoutcrystalstructuredeeprepresentationlearningfromstoichiometry AT alphaalee predictingmaterialspropertieswithoutcrystalstructuredeeprepresentationlearningfromstoichiometry |
_version_ |
1718396732221423616 |