Predicting materials properties without crystal structure: deep representation learning from stoichiometry

Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.

Guardado en:
Detalles Bibliográficos
Autores principales: Rhys E. A. Goodall, Alpha A. Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/cb261c1294be401abf3c4d88070efdba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cb261c1294be401abf3c4d88070efdba
record_format dspace
spelling oai:doaj.org-article:cb261c1294be401abf3c4d88070efdba2021-12-02T10:48:00ZPredicting materials properties without crystal structure: deep representation learning from stoichiometry10.1038/s41467-020-19964-72041-1723https://doaj.org/article/cb261c1294be401abf3c4d88070efdba2020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19964-7https://doaj.org/toc/2041-1723Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.Rhys E. A. GoodallAlpha A. LeeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Rhys E. A. Goodall
Alpha A. Lee
Predicting materials properties without crystal structure: deep representation learning from stoichiometry
description Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.
format article
author Rhys E. A. Goodall
Alpha A. Lee
author_facet Rhys E. A. Goodall
Alpha A. Lee
author_sort Rhys E. A. Goodall
title Predicting materials properties without crystal structure: deep representation learning from stoichiometry
title_short Predicting materials properties without crystal structure: deep representation learning from stoichiometry
title_full Predicting materials properties without crystal structure: deep representation learning from stoichiometry
title_fullStr Predicting materials properties without crystal structure: deep representation learning from stoichiometry
title_full_unstemmed Predicting materials properties without crystal structure: deep representation learning from stoichiometry
title_sort predicting materials properties without crystal structure: deep representation learning from stoichiometry
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/cb261c1294be401abf3c4d88070efdba
work_keys_str_mv AT rhyseagoodall predictingmaterialspropertieswithoutcrystalstructuredeeprepresentationlearningfromstoichiometry
AT alphaalee predictingmaterialspropertieswithoutcrystalstructuredeeprepresentationlearningfromstoichiometry
_version_ 1718396732221423616