Predicting materials properties without crystal structure: deep representation learning from stoichiometry

Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.

Guardado en:
Detalles Bibliográficos
Autores principales: Rhys E. A. Goodall, Alpha A. Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/cb261c1294be401abf3c4d88070efdba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!