Predicting materials properties without crystal structure: deep representation learning from stoichiometry
Predicting the structure of unknown materials’ compositions represents a challenge for high-throughput computational approaches. Here the authors introduce a new stoichiometry-based machine learning approach for predicting the properties of inorganic materials from their elemental compositions.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cb261c1294be401abf3c4d88070efdba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!