Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism
Namitz, Zheng et al. identify a bivalent interaction by the yeast Ess1 with CTD peptides of RNA polymerase II. Their results suggest an anchored mechanism of isomerization, and raise the possibility of eukaryotic parvulin-class prolyl isomerases gaining a broader substrate specificity during evoluti...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/cb36b1e1b4ac4118b1cc027bc944f7fe |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Namitz, Zheng et al. identify a bivalent interaction by the yeast Ess1 with CTD peptides of RNA polymerase II. Their results suggest an anchored mechanism of isomerization, and raise the possibility of eukaryotic parvulin-class prolyl isomerases gaining a broader substrate specificity during evolution, by acquiring a flexible linker that generates a more dynamic binding mode. |
---|