Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
In hyperspectral image (HSI) classification, convolutional neural networks (CNN) have been attracting increasing attention because of their ability to represent spectral-spatial features. Nevertheless, the conventional CNN models perform convolution operation on regular-grid image regions with a fix...
Guardado en:
Autores principales: | Minghua Zhang, Hongling Luo, Wei Song, Haibin Mei, Cheng Su |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cb492dd9d46f47d7ba984d8d0b09d803 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graph convolutional network method for small sample classification of hyperspectral images
por: ZUO Xibing, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021)