Deep learning enables structured illumination microscopy with low light levels and enhanced speed

Super-resolution microscopy typically requires high laser powers which can induce photobleaching and degrade image quality. Here the authors augment structured illumination microscopy (SIM) with deep learning to reduce the number of raw images required and boost its performance under low light condi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luhong Jin, Bei Liu, Fenqiang Zhao, Stephen Hahn, Bowei Dong, Ruiyan Song, Timothy C. Elston, Yingke Xu, Klaus M. Hahn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/cb59b1d9328d413d81e5520a618431fc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Super-resolution microscopy typically requires high laser powers which can induce photobleaching and degrade image quality. Here the authors augment structured illumination microscopy (SIM) with deep learning to reduce the number of raw images required and boost its performance under low light conditions.